OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

Laser Doppler field sensor for high resolution flow velocity imaging without camera

Andreas Voigt, Christian Bayer, Katsuaki Shirai, Lars Büttner, and Jürgen Czarske  »View Author Affiliations


Applied Optics, Vol. 47, Issue 27, pp. 5028-5040 (2008)
http://dx.doi.org/10.1364/AO.47.005028


View Full Text Article

Enhanced HTML    Acrobat PDF (21778 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we present a laser sensor for highly spatially resolved flow imaging without using a camera. The sensor is an extension of the principle of laser Doppler anemometry (LDA). Instead of a parallel fringe system, diverging and converging fringes are employed. This method facilitates the determination of the tracer particle position within the measurement volume and leads to an increased spatial and velocity resolution compared to conventional LDA. Using a total number of four fringe systems the flow is resolved in two spatial dimensions and the orthogonal velocity component. Since no camera is used, the resolution of the sensor is not influenced by pixel size effects. A spatial resolution of 4 μm in the x direction and 16 μm in the y direction and a relative velocity resolution of 1 × 10 3 have been demonstrated up to now. As a first application we present the velocity measurement of an injection nozzle flow. The sensor is also highly suitable for applications in nano- and microfluidics, e.g., for the measurement of flow rates.

© 2008 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 15, 2008
Revised Manuscript: July 30, 2008
Manuscript Accepted: August 8, 2008
Published: September 19, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Andreas Voigt, Christian Bayer, Katsuaki Shirai, Lars Büttner, and Jürgen Czarske, "Laser Doppler field sensor for high resolution flow velocity imaging without camera," Appl. Opt. 47, 5028-5040 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-47-27-5028


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42, 495-511 (2007). [CrossRef]
  2. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).
  3. Y.-L. Lo and C.-H. Chuang, “Fluid velocity measurements in a microchannel performed with two new optical heterodyne microscopes,” Appl. Opt. 41, 6666-6675 (2002). [CrossRef] [PubMed]
  4. A. K. Tieu, M. R. Mackenzie, and E. B. Li, “Measurements in microscopic flow with a solid-state LDA,” Exp. Fluids 19, 293-294 (1995). [CrossRef]
  5. G. Fast, D. Kuhn, and A. G. Class, “Tomographische laser-Doppler-anemometrie (TLDA)-ein neues verfahren zur steigerung der ortsauflösung,” Technisches Messen. 73, 527-536 (2006). [CrossRef]
  6. M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry (Springer, 1998).
  7. R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39, 159-169 (2005). [CrossRef]
  8. M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181-1186 (1991). [CrossRef]
  9. K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61-R72 (2002). [CrossRef]
  10. S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392-1397 (2001). [CrossRef]
  11. C. J. Kähler and J. Kompenhans, “Fundamentals of multiple plane stereo particle image velocimetry,” Exp. Fluids 29, S70-S77 (2000). [CrossRef]
  12. G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. von Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41, 933-947 (2006). [CrossRef]
  13. M. Tanahashi, Y. Fukchi, G.-M. Choi, K. Fukuzato, and T. Miyauchi, “The time-resolved stereoscopic digital particle image velocimetry up to 26.7 KHz,” in Proceedings of the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, paper 8.1 (Lisbon, Portugal 12-15 July, 2004).
  14. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27, 414-419(1999). [CrossRef]
  15. P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westeweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200(2006). [CrossRef]
  16. J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8, 1379-1392 (1997). [CrossRef]
  17. R. Lindken, J. Westerweel, and B. Wienke, “Stereoscopic micro particle image velocimetry,” Exp. Fluids 41, 161-171(2006). [CrossRef]
  18. M. Brede, M. Witte, G. Dehnhardt, and A. Leder, “Experimentelle untersuchung biologischer mikroströmungen mittels stereo-μPIV,” in Conference of the German Association for Laser Anemometry (GALA, 2007) (in German language, Lasermethoden in der Strömungsmesstechnik, 15. Fachtagung 2007 Rostock), A. Leder, M. Brede, F. Hüttmann, B. Ruck, and D. Dopheide, eds., pp. 53.1-53.8.
  19. K. P. Angele, Y. Suzuki, J. Miwa, and N. Kasagi, “Development of a high-speed scanning micro PIV system using a rotating disc,” Meas. Sci. Technol. 17, 1639-1646 (2006). [CrossRef]
  20. S. Y. Yoon and K. C. Kim, “3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept,” Meas. Sci. Technol. 17, 2897-2905 (2006). [CrossRef]
  21. C. J. Kähler, U. Scholz, and J. Ortmanns, “Wall-shear-stress and near-wall turblulence measurements up to single pixel resolution by means of long-distance micro-PIV,” Exp. Fluids 41, 327-341 (2006). [CrossRef]
  22. J. Czarske, J. Möbius, and K. Moldenhauer, “Mode-locking external-cavity laser-diode sensor for displacement measurements of technical surfaces,” Appl. Opt. 44, 5180-5189 (2005). [CrossRef] [PubMed]
  23. J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13, 1979-1989 (2002). [CrossRef]
  24. P. Miles, “Geometry of the fringe field formed in the intersection of two Gaussian beams,” Appl. Opt. 35, 5887-5895 (1996). [CrossRef] [PubMed]
  25. L. Büttner, Untersuchung Neuartiger Laser-Doppler-Verfahren zur Hochauflösenden Geschwindigkeitsmessung, E.Cullivier, ed. (Ph.D. thesis in German, 2004).
  26. L. Büttner, J. Czarske, and H. Knuppertz, “Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44, 2274-2280 (2005). [CrossRef] [PubMed]
  27. K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473-481 (2006). [CrossRef]
  28. J. Czarske, “Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals,” Meas. Sci. Technol. 12, 597-614 (2001). [CrossRef]
  29. J. W. Czarske, “Method for analysis of the fundamental measuring uncertainty of laser Doppler velocimeters,” Opt. Lett. 21, 522-524 (1996). [CrossRef] [PubMed]
  30. T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optics profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501-2510 (2005). [CrossRef] [PubMed]
  31. F. M. White, Viscous Fluid Flow (McGraw-Hill, 2005).
  32. H. Müller, V. Strunck, and D. Dopheide, “The application of quadrature demodulation techniques for the investigation of flows,” Flow Meas. Instrum. 7, 237-245 (1996). [CrossRef]
  33. C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Measurement of acceleration and multiple velocity components using a laser Doppler velocity profile sensor,” Meas. Sci. Technol. 19, 055401 (2008). [CrossRef]
  34. L. Büttner and J. Czarske, “Determination of the axial velocity component by a laser-Doppler velocity profile sensor,” J. Opt. Soc. Am. A 23, 444-454 (2006). [CrossRef]
  35. J. Czarske, “Laser Doppler velocimetry using powerful solid-state light sources,” Meas. Sci. Technol. 17, R71-R91 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited