OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 12 — Dec. 1, 2008

Signal enhancement of surface plasmon-coupled directional emission by a conical mirror

Derek S. Smith, Yordan Kostov, and Govind Rao  »View Author Affiliations

Applied Optics, Vol. 47, Issue 28, pp. 5229-5234 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (4018 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple strategy for increasing the collection efficiency of surface plasmon-coupled emission (SPCE) is demonstrated. SPCE is a near-field phenomenon occurring when excited fluorophores are in close proximity to a subwavelength metal film. The energy of the fluorophores induces surface plasmons that radiate the coupled energy at highly specific angles. In an attempt to maximize the collected emission, a conical mirror was placed around the coupling prism. The result was a nearly 500 fold enhancement over the free space signal as detected from a single point from a poly(vinyl alcohol) layer doped with ruthenium. Coupling this large enhancement with LED excitation could lead to the development of inexpensive, handheld fluorescent devices with high sensitivity.

© 2008 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(240.0310) Optics at surfaces : Thin films
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:

Original Manuscript: April 10, 2008
Revised Manuscript: August 11, 2008
Manuscript Accepted: August 11, 2008
Published: September 30, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Derek S. Smith, Yordan Kostov, and Govind Rao, "Signal enhancement of surface plasmon-coupled directional emission by a conical mirror," Appl. Opt. 47, 5229-5234 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Ge, Y. Kostov and G. Rao, “Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture,”Biotechnol. Bioeng. 89, 329-334 (2005). [CrossRef]
  2. X. Ge, M. Hanson, H. Shen, Y. Kostov, K. A. Brorson, D. D. Frey, A. R. Moreira, and G. Rao. “Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture,” J. Biotechnol. 122, 293-306 (2006). [CrossRef]
  3. A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, “The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors,” Biotechnol. Prog. 20, 338-345 (2004).
  4. X. Ge, L. Tolosa, J. Simpson, and G. Rao, “Genetically engineered binding proteins as biosensors for fermentation and cell culture,” Biotechnol. Bioeng. 84, 723-731 (2003). [CrossRef]
  5. A. Gupta and G. Rao, “A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor,” Biotechnol. Bioeng. 84, 351-358 (2003). [CrossRef]
  6. C. Lu, W. E. Bentley, and G. Rao, “Comparisons of oxidative stress response genes in aerobic Escherichia coli fermentations,” Biotechnol. Bioeng. 83, 864-870 (2003). [CrossRef]
  7. L. J. Kricka, “Stains, labels and detection strategies for nucleic acids assays,” Ann. Clin. Biochem. 39, 114-129 (2002).
  8. F. M. Ali, R. Kirby, A. P. Goodey, M. D. Rodriguez, A. D. Ellington, D. P. Neikirk, and J. T. McDevitt, “DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays,” Anal. Chem. 75, 4732-4739 (2003). [CrossRef]
  9. G. Tanaka, H. Funabashi, M. Mie, and E. Kobatake, “Fabrication of an antibody microwell array with self-adhering antibody binding protein,” Anal. Biochem. 350, 298-303 (2006). [CrossRef]
  10. X. Q. Guo, F. N. Castellano, L. Li, and J. R. Lakowicz, “Use of a long-lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular-weight analytes,” Anal. Chem. 70, 632-637 (1998). [CrossRef]
  11. E. H. Lan, B. Dunn, and J. I. Zink, “Solgel encapsulated anti-trinitrotoluene antibodies in immunoassays for TNT,” Chem. Mater. 12, 1874-1878 (2000). [CrossRef]
  12. L. Ao, F. Gao, B. Pan, R. He, and D. Cui, “Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles,” Anal. Chem. 78, 1104-1106 (2006). [CrossRef]
  13. D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, “The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface,” J. Chem. Phys. 78, 5324-5338 (1983). [CrossRef]
  14. J. Kummerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80, 1031-1046 (1993). [CrossRef]
  15. K. Sokolov, G. Chumanov, and T. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem. 70, 3898-3905 (1998). [CrossRef]
  16. J. R. Lakowicz, Y. Shen, S. Dauria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver islands on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301, 261-277(2002). [CrossRef]
  17. B. P. Maliwal, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Fluorescence properties of labeled proteins near silver colloid surfaces,” Biopolymers (Biospectroscopy) 70, 585-594 (2003).
  18. J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides,” Anal. Biochem. 315, 57-66 (2003). [CrossRef]
  19. E. G. Matveeva, I. Gryczynski, A. Barnett, Z. Leonenko, J. R. Lakowicz, and Z. Gryczynski, “Metal particle enhanced fluorescent immunoassays on metal mirrors,” Anal. Biochem. 363, 239-245 (2007). [CrossRef]
  20. S. Gerber, F. Reil, U. Hohenester, T. Chlagenhaufen, J. R. Krenn, and A. Leitner, “Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures,” Phys. Rev. B 75, 073404 (2007).
  21. J. Malicka, I. Gryczynski, and J. R. Lakowicz, “DNA hybridization assays using metal-enhanced fluorescence,” Biochem. Biophys. Res. Commun. 306, 213-218 (2003). [CrossRef]
  22. E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334, 303-311 (2004). [CrossRef]
  23. C. Mayer, N. Stich, T. Schalkhammer, and G. Bauer, “Slide-format proteomic biochips based on surface-enhanced nanocluster-resonance,” Fresenius J. Anal. Chem. 371, 238-245 (2001).
  24. N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, “Nanofilms and nanoclusters: energy sources driving fluorophores of biochip bound labels,” J. Nanosci. Nanotechnol. 1, 397-405 (2001).
  25. K. Aslan, J. R. Lakowicz, H. Szmacinski, and C. D. Geddes, “Metal-enhanced fluorescence solution-based sensing platform,” J. Fluoresc. 14, 677-679 (2004). [CrossRef]
  26. J. R. Lakowicz, “Radiative decay engineering. 5. Metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005). [CrossRef]
  27. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115-130 (2000). [CrossRef]
  28. J. R. Lakowicz, “Radiative decay engineering. 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153-169 (2004). [CrossRef]
  29. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering. 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004). [CrossRef]
  30. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568-12574 (2004). [CrossRef]
  31. I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B 108, 12073-12083 (2004). [CrossRef]
  32. I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76, 4076-4081(2004). [CrossRef]
  33. N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76, 2168-2173 (2004). [CrossRef]
  34. S. Ekgasit, C. Thammachreon, and W. Knoll, “Surface plasmon resonance spectroscopy based on evanescent field treatment,” Anal. Chem. 76, 561-568 (2004). [CrossRef]
  35. J. Enderlein, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express 13, 8855-8865 (2005). [CrossRef]
  36. D. Rachlin, “Optimized approach for microarray screening,” Proc. SPIE 4632, 13-26 (2002).
  37. Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005).
  38. D. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: ultrafast oxygen sensing using surface-plasmon coupled emission from ruthenium probes,” Sens. Actuators B 127, 432-440(2007). [CrossRef]
  39. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005(2005). [CrossRef]
  40. J. Enderlein, “A theoretical investigation of single-molecule fluorescence detection on thin metallic layers,” Biophys. J. 78, 2151-2158 (2000).
  41. D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005). [CrossRef]
  42. H. Raether, “Physics of thin films,” Advances in Research and Development (Academic, 1977), Vol. 9.
  43. I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577-588 (1978). [CrossRef]
  44. K. Vasilev, W. Knoll, and M. Kreiter, “Fluorescence intensities of chromophores in front of a thin metal film,” J. Chem. Phys. 120, 3439-3445 (2004). [CrossRef]
  45. F. Yu, S. Persson, S. Lofas, and W. Knoll, “Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy,” J. Am. Chem. Soc. 126, 8902-8903(2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited