OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 12 — Dec. 1, 2008

Statistical characterization of hyperspectral background clutter in the reflective spectral region

Dimitris Manolakis, Michael Rossacci, Denise Zhang, John Cipar, Ronald Lockwood, Thomas Cooley, and John Jacobson  »View Author Affiliations

Applied Optics, Vol. 47, Issue 28, pp. F96-F106 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (4430 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hyperspectral imaging systems for daylight operation measure and analyze reflected and scattered radiation in p-spectral channels covering the reflective infrared region 0.4 2.5 μm . Consequently, the p-dimensional joint distribution of background clutter is required to design and evaluate optimum hyperspectral imaging processors. In this paper, we develop statistical models for the spectral variability of natural hyperspectral backgrounds using the class of elliptically contoured distributions. We demonstrate, using data from the NASA AVIRIS sensor, that models based on the multivariate t-elliptically contoured distribution capture with sufficient accuracy the statistical characteristics of natural hyperspectral backgrounds that are relevant to target detection applications.

© 2008 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Hyperspectral Processing and Analysis

Original Manuscript: March 4, 2008
Revised Manuscript: May 23, 2008
Manuscript Accepted: July 28, 2008
Published: August 7, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Dimitris Manolakis, Michael Rossacci, Denise Zhang, John Cipar, Ronald Lockwood, Thomas Cooley, and John Jacobson, "Statistical characterization of hyperspectral background clutter in the reflective spectral region," Appl. Opt. 47, F96-F106 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Manolakis, D. Marden, J. Kerekes, and G. Shaw, “On the statistics of hyperspectral imaging data,” Proc. SPIE 4381, 308-316 (2001). [CrossRef]
  2. D. Manolakis, “Realistic matched filter performance prediction for hyperspectral target detection,” Opt. Eng. 44, 116401 (2005). [CrossRef]
  3. J. B. Adams, M. O. Smith, and A. R. Gillespie, “Imaging spectroscopy: Interpretation based on spectral mixture analysis,” in Remote Geochemical Analysis: Elemental and Mineralogical Composition C. M. Pieters and P. A. J. Englert, eds. (Cambridge University Press, 1993), pp. 145-166.
  4. J. Cipar, R. Lockwood, T. Cooley, and P. Grigsby, “Background spectral library for Fort A.P. Hill Virginia,” Proc. SPIE 5544, 35-46 (2004). [CrossRef]
  5. Strictly speaking Δ is the Mahalanobis distance and Δ2 is the squared Mahalanobis distance; however, for simplicity, the term Mahalanobis distance is used in both cases. The exact meaning should be clear from the context.
  6. S. Kotz and S. Nadarajah, Multivariate t-Distributions and Their Applications (Cambridge University Press, 2004).
  7. T. W. Anderson, An Introduction to Multivariate Statistical Analysis, 3rd ed. (Wiley, 2003),
  8. K. T. Fang, S. Kotz, and K. W. Ng, Symmetric Multivariate and Related Distributions (Chapman and Hall, 1990).
  9. M. Rangaswamy, D. Weiner, and A. Ozturk, “Non-Gaussian random vector identification using spherically invariant random processes,” IEEE Trans. Aerosp. Electron. Syst. 29, 111-124 (1993). [CrossRef]
  10. R. Gnanadesikan, Methods for Statistical Data Analysis of Multivariate Observations, 2nd ed. (Wiley, 1997),
  11. M. Bernhardt, J. Heather, and O. Watkins, “Hyperspectral clutter statistics, generative models, and anomaly detection,” Proc. SPIE 6233, 623321 (2006). [CrossRef]
  12. D. Marden and D. Manolakis, “Statistical modeling of hyperspectral imaging data and their applications,” Tech. Rep. HTAp-16 (Lincoln Laboratory, 2004).
  13. D. Marden and D. Manolakis, “Modeling hyperspectral imaging sata using elliptically contoured distributions,” Proc. SPIE 5093, 253-262 (2003). [CrossRef]
  14. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998). [CrossRef]
  15. S. Golden-Adler, A. Berk, L. S. Bernstein, S. Richtsmeier, P. K. Acharya, M. W. Matthew, G. P. Anderson, C. L. Allred, L. S. Jeong, and J. H. Chetwynd, “FLAASH, A MODTRAN4 atmospheric correction package for hyperspectral data retrievals and simulations,” (Jet Propulsion Laboratory, 1998), pp. 97-21.
  16. S. Adler-Golden, M. L. Matthew, L. Bernstein, R. Levine, A. Berk, S. Richtsmeier, P. Acharya, G. Anderson, J. W. Felde, J. Gardner, M. Hoke, L. Jeong, B. Pukall, A. Ratkowski, H. hua, and K. Burke, “Atmospheric correction for short-wave spectral imagery,”Proc. SPIE 3753, 61-69 (1999). [CrossRef]
  17. M. Matthew, S. Adler-Golden, A. Berk, G. Felde, G. Anderson, D. Gorodetzky, S. Paswaters, and M. Shippert, “Atmospheric correction of spectral imagery: Evaluation of the FLAASH algorithm with AVIRIS data,” Proc. SPIE 5093, 474-482 (2003). [CrossRef]
  18. N. Acito, G. Corsini, and M. Diani, “Statistical analysis of hyper-spectral data: A non-gaussian approach,” EURASIP J. Appl. Signal Process. 2007, 27673 (2007).
  19. D. Manolakis and D. Marden, “Dimensionality reduction of hyperspectral imaging data using local principal component transforms,” Proc. SPIE 5425, 393-401 (2004). [CrossRef]
  20. M. Rossacci, D. Manolakis, J. Cipar, R. Lockwood, T. Cooley, and J. Jacobson, “Effects of dimensionality reduction on the statistical distribution of hyperspectral backgrounds,” Proc. SPIE 6302, 63020H (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited