OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 12 — Dec. 1, 2008

Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography

Christophe Minetti, Natacha Callens, Gwennou Coupier, Thomas Podgorski, and Frank Dubois  »View Author Affiliations


Applied Optics, Vol. 47, Issue 29, pp. 5305-5314 (2008)
http://dx.doi.org/10.1364/AO.47.005305


View Full Text Article

Enhanced HTML    Acrobat PDF (2042 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the use of a digital holographic microscope working with partially coherent spatial illumination to study concentration profiles inside confined deformable bodies flowing in microchannels. The studied phenomenon is rapidly changing in time and requires the recording of the complete holographic information for every frame. For this purpose, we implemented one of the classical methods of off-axis digital holography: the Fourier method. Digital holography allows one to numerically investigate a volume by refocusing the different planes of depth, allowing one to locate the objects under investigation in three dimensions. Furthermore, the phase is directly related to the refractive index, thus to the concentration inside the body. Based on simple symmetry assumptions, we present an original method for determining the concentration profiles inside deformable objects in microconfined flows. Details of the optical and numerical implementation, as well as exemplative experimental results are presented.

© 2008 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(100.0100) Image processing : Image processing
(180.0180) Microscopy : Microscopy

ToC Category:
Holography

History
Original Manuscript: June 9, 2008
Revised Manuscript: August 13, 2008
Manuscript Accepted: September 3, 2008
Published: October 7, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Christophe Minetti, Natacha Callens, Gwennou Coupier, Thomas Podgorski, and Frank Dubois, "Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography," Appl. Opt. 47, 5305-5314 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-47-29-5305


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221-1223 (1998). [CrossRef]
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase contrast imaging,” Opt. Lett. 24, 291-293 (1999). [CrossRef]
  3. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165-1167 (2005). [CrossRef] [PubMed]
  4. G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10, 060503 (2005). [CrossRef]
  5. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with digital holography microscope using a partial spatial coherent source,” Appl. Opt. 38, 7085-7094 (1999). [CrossRef]
  6. F. Dubois, C. Yourassowsky, and O. Monnom, “Microscopie en holographie digitale avec une source partiellement cohérente,” in Imagerie et Photonique pour les Sciences du Vivant et la Médecine, M. Faupel, P. Smigielski, and R. Grzymala, eds. (Fontis Média & Formatis , 2004), pp. 287-302.
  7. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005). [CrossRef] [PubMed]
  8. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536-6544 (2004). [CrossRef]
  9. F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006). [CrossRef] [PubMed]
  10. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31, 2759-2761 (2006). [CrossRef] [PubMed]
  11. F. Charrière, A. Marian, F. Montfort, J. Kühn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178-180 (2006). [CrossRef] [PubMed]
  12. T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, pp. 1338-1344 (1995). [CrossRef]
  13. T.-C.Poon, ed., Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006). [CrossRef]
  14. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938-1946 (2003). [CrossRef] [PubMed]
  15. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300-4306 (2006). [CrossRef] [PubMed]
  16. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. De Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007). [CrossRef]
  17. T.-C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370-381 (1999). [CrossRef]
  18. D. Kim and B. Javidi, “Distortion-tolerant 3-D object recognition by using single exposure on-axis digital holography,” Opt. Express 12, 5539-5548 (2004). [CrossRef] [PubMed]
  19. F. Dubois, C. Minetti, O. Monnom, C. Yourassowsky, and J.-C. Legros, “Pattern recognition with digital holographic microscope working in partially coherent illumination,” Appl. Opt. 41, 4108-4119 (2002). [CrossRef] [PubMed]
  20. F. Dubois, O. Monnom, C. Yourassowsky, and J.-C. Legros, “Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies,” Appl. Opt. 41, 2621-2626 (2002). [CrossRef] [PubMed]
  21. G. Indebetouw, Y. Tada, and J. Leacock, “Quantitative phase imaging with scanning holographic microscopy: an experimental assesment,” BioMed. Eng. OnLine 5, 63 (2006). [CrossRef] [PubMed]
  22. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895-5908 (2006). [CrossRef] [PubMed]
  23. W. Li, N. C. Loomis, Q. Hu, and C. S. Davis, “Focus detection from digital in-line holograms based on spectral l1 norms,” J. Opt. Soc. Am. A 24, 3054-3062 (2007). [CrossRef]
  24. C. P. McElhinney, J. B. McDonald, A. Castro, Y. Frauel, B. Javidi, and T. J. Naughton, “Depth-independent segmentation of macroscopic three-dimensional objects encoded in single perspectives of digital holograms,” Opt. Lett. 32, 1229-1231 (2007). [CrossRef] [PubMed]
  25. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). [CrossRef] [PubMed]
  26. M. Sebesta and M. Gustafsson, “Object characterization with refractometric digital Fourier holography,” Opt. Lett. 30, 471-473 (2005). [CrossRef] [PubMed]
  27. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowsky, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flows analysis,” Appl. Opt. 45, 864-871 (2006). [CrossRef] [PubMed]
  28. T. Kreis, “Digital holographic interference-phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A 3, 847-855 (1986). [CrossRef]
  29. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]
  30. V. Vitkova, M. Mader, and T. Podgorski, “Deformation of vesicles flowing through a capillary,” Europhys. Lett. 68, 398-404 (2004). [CrossRef]
  31. H. Noguchi and G. Gompper, “Shape transitions of fluid vesicles and red blood cells in capillary flows,” Proc. Natl. Acad. Sci. USA 102, 14159-14164 (2005). [CrossRef] [PubMed]
  32. B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J Biomed. Opt. 12, 054009 (2007). [CrossRef] [PubMed]
  33. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361-9373(2005). [CrossRef] [PubMed]
  34. B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33, 744-746 (2008). [CrossRef] [PubMed]
  35. F. Dubois, M.-L. Novella Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43, 1131-1139 (2004). [CrossRef] [PubMed]
  36. S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express 15, 13640-13648 (2007). [CrossRef] [PubMed]
  37. N. M. Dragomir and X. M. G. A. Roberts. “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71, 5-10 (2008). [CrossRef]
  38. M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (8 pages) (2008). [CrossRef]
  39. W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171-173 (2008). [CrossRef] [PubMed]
  40. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717-719 (2007). [CrossRef]
  41. F. Charrière, N. Pavillon, T. Colomb, T. Heger, E. Mitchell, P. Marquet, B. Rappaz, and C. Depeursinge, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005-7013 (2006). [CrossRef] [PubMed]
  42. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping. Theory, Algorithms, and Software (Wiley-Interscience1998).
  43. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190 (2006). [CrossRef]
  44. P. Ferraro, D. Alferi, S. D. Nicola, L. D. Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31, 1405-1407 (2006). [CrossRef] [PubMed]
  45. D. Mumford and J. Shah, “Optimal approximation by piecewise smooth functions and associated variational problems,” Commun. Pure Appl. Math. 42, 577-685 (1989). [CrossRef]
  46. M. I. Angelova, S. Soleau, P. Meleard, J.-F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external ac electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci. 89, 127 (1992). [CrossRef]
  47. F. M. White, Viscous Fluid Flow (McGraw-Hill, 1974).
  48. D. R. Lide, Handbook of Chemistry and Physics (CRC Press, 2008).
  49. V. Vitkova, J. Genova, and I. Bivas, “Permeability and the hidden area of lipid bilayers,” Eur. Biophys. J. 33 , 706-714(2004). [CrossRef] [PubMed]
  50. K. Olbrich, W. Rawicz, D. Needham, and E. Evans, “Water permeability and mechanical strength of polyunsaturated lipid bilayers,” Biophys. J. 79, 321-327 (2000). [CrossRef] [PubMed]
  51. J. Nardi, R. Bruinsma, and E. Sackmann, “Vesicles as osmotic motors,” Phys. Rev. Lett. 82, 5168-5171 (1999). [CrossRef]
  52. R. Bruinsma, “Rheology and shape transitions of vesicles under capillary flow,” Physica A 234, 249-270 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited