OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 12 — Dec. 1, 2008

Transmission-type angle deviation microscopy

Ming-Hung Chiu, Chih-Wen Lai, Chen-Tai Tan, and Chin-Fa Lai  »View Author Affiliations


Applied Optics, Vol. 47, Issue 29, pp. 5442-5445 (2008)
http://dx.doi.org/10.1364/AO.47.005442


View Full Text Article

Enhanced HTML    Acrobat PDF (3489 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new microscopy technique that we call transmission angle deviation microscopy (TADM). It is based on common-path heterodyne interferometry and geometrical optics. An ultrahigh sensitivity surface plasmon resonance (SPR) angular sensor is used to expand dynamic measurement ranges and to improve the axial resolution in three-dimensional optical microscopy. When transmitted light is incident upon a specimen, the beam converges or diverges because of refractive and/or surface height variations. Advantages include high axial resolution ( 32 nm ), nondestructive and noncontact measurement, and larger measurement ranges ( ± 80 μm ) for a numerical aperture of 0.21in a transparent measurement medium. The technique can be used without conductivity and pretreatment.

© 2008 Optical Society of America

OCIS Codes
(040.2840) Detectors : Heterodyne
(050.5080) Diffraction and gratings : Phase shift
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(180.5810) Microscopy : Scanning microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Microscopy

History
Original Manuscript: June 16, 2008
Revised Manuscript: September 4, 2008
Manuscript Accepted: September 9, 2008
Published: October 8, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Ming-Hung Chiu, Chih-Wen Lai, Chen-Tai Tan, and Chin-Fa Lai, "Transmission-type angle deviation microscopy," Appl. Opt. 47, 5442-5445 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-47-29-5442


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16, 3-12 (2005). [CrossRef] [PubMed]
  2. M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-field fluorescence microscopy: an optical nanotool to study protein organization at the cell membrane,” NanoBioTechnology 1, 113-120 (2005). [CrossRef]
  3. A. D. L. Humphris, J. K. Hobbs, and M. J. Miles, “Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second,” Appl. Phys. Lett. 83, 6-8 (2003). [CrossRef]
  4. G. Cappello, M. Badoual, A. Ott, and J. Prost, “Kinesin motion in the absence of external forces characterized by interference total internal reflection microscopy,” Phys. Rev. E 68, 021907 (2003). [CrossRef]
  5. A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665-1667 (2000). [CrossRef]
  6. L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84, 379-383 (2006). [CrossRef]
  7. M. G. L. Gustafsson, D. A. Agrad, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. (Oxford) 195, 10-16 (1999). [CrossRef]
  8. L. H. Schaefer, D. Schuster, and H. Herz, “Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy,” J. Microsc. (Oxford) 204, 99-107 (2001). [CrossRef]
  9. B. R. Masters, Confocal Microscopy and Multiphoton Excitation Microscopy: the Genesis of Live Cell Imaging, Vol. PM161 of SPIE Press Monographs (SPIE Press, 2005), pp. 83-149.
  10. T. Kohno, N. Ozawa, K. Miyamoto, and T. Musha, “High precision optical surface sensor,” Appl. Opt. 27, 103-108 (1988). [CrossRef] [PubMed]
  11. S. F. Wang, M. H. Chiu, C. W. Lai, and R. S. Chang, “High-sensitivity small-angle sensor based on the surface plasmon resonance technology and heterodyne interferometry,” Appl. Opt. 45, 6702-6707 (2006). [CrossRef] [PubMed]
  12. M. H. Chiu, B. Y. Shih, and C. W. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett. 90, 021111 (2007). [CrossRef]
  13. D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two-frequency laser,” Precis. Eng. 18, 161-163 (1996). [CrossRef]
  14. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), pp. 4-29.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited