OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 12 — Dec. 1, 2008

Linear basis for metallic and iridescent colors

José M. Medina  »View Author Affiliations


Applied Optics, Vol. 47, Issue 30, pp. 5644-5653 (2008)
http://dx.doi.org/10.1364/AO.47.005644


View Full Text Article

Enhanced HTML    Acrobat PDF (3264 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

I have examined the correlation structure in goniochromism by principal-component analysis. Reflectance spectra were collected in synthetic samples that reproduce metallic, nacreous, and iridescent effects under different viewing angles. Although three principal components take into account 99% of the variance, between seven and eight are needed to reach 99.99%. The results were also confirmed by analyzing each viewing condition separately. It was found that although the viewing angle does not modify the first three basis functions, it affects the higher-order ones. These angle-dependent effects can be attributed to optical interference flakes. The implications for pigment identification are discussed.

© 2008 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(260.3160) Physical optics : Interference
(310.1620) Thin films : Interference coatings
(330.1730) Vision, color, and visual optics : Colorimetry
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(310.6188) Thin films : Spectral properties

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: July 8, 2008
Manuscript Accepted: September 17, 2008
Published: October 15, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Citation
José M. Medina, "Linear basis for metallic and iridescent colors," Appl. Opt. 47, 5644-5653 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-47-30-5644


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. S. McCamy, “Observation and measurement of the appearance of metallic materials. I. Macro appearance,” Color Res. Appl. 21, 292-304 (1996). [CrossRef]
  2. C. S. McCamy, “Observation and measurement of the appearance of metallic materials. II. Micro appearance,” Color Res. Appl. 23, 362-373 (1998). [CrossRef]
  3. H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, and M. Akimoto, “Microstructures and optical properties of scales of butterfly wings,” Opt. Rev. 3, 139-145 (1996). [CrossRef]
  4. A. R. Parker, “515 million years of structural colour,” J. Opt. A Pure Appl. Opt. 2, R15-R28 (2000). [CrossRef]
  5. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852-855 (2003). [CrossRef] [PubMed]
  6. F. W. Billmeyer and J. G. Davidson, “Color and appearance of metallized paint films. I. Characterization,” J. Paint Technol. 46, 31-37 (1974).
  7. P. A. Lewis, Pigment Handbook, Properties and Economics, 2nd ed. (Wiley, 1988), Vol. 1, p. 976.
  8. H. G. Völz, Industrial Color Testing, Fundamentals and Techniques, 2nd ed. (Wiley, 2001), p. 388.
  9. W. R. Cramer, “Examples of interference and the color pigment mixtures green with red and red with green,” Color Res. Appl. 27, 276-281 (2002). [CrossRef]
  10. G. Baba and H. Arai, “Gonio-spectrophotometry of metal-flake and pearl-mica pigmented paint surfaces,” in Fourth Oxford Conference on Spectroscopy, A. Springsteen and M. Pointer, eds., Proc SPIE 4826, 79-86 (2003).
  11. M. Mikula, M. Ceppan, and K. Vasko, “Gloss and goniocolorimetry of printed materials,” Color Res. Appl. 28, 335-342(2003). [CrossRef]
  12. M. E. Nadal and E. A. Early, “Color measurements for pearlescent coatings,” Color Res. Appl. 29, 38-42 (2004). [CrossRef]
  13. M.V. Diamantini, B. del Curto, and M. Pedeferri , “Interference colors of thin oxide layers on titanium,” Color Res. Appl. 33, 221-228 (2008). [CrossRef]
  14. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982), p. 950.
  15. DIN 6175-2, “Farbtoleranzen für Automobillackierungen--Teil 2: Effektlackierungen,” (Deutsches Institut für Normung e.V., 2001).
  16. ASTM E2175-01, “Standard practice for specifying the geometry of multiangle spectrophotometers,” (American Society for Testing and Materials, 2001).
  17. A. Takagi, A. Watanabe, and G. Baba, “Prediction of spectral reflectance factor distribution of automotive paint finishes,” Color Res. Appl. 30, 275-282 (2005). [CrossRef]
  18. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673-1683 (1986). [CrossRef] [PubMed]
  19. J. Romero, A. Garcia-Beltran, and J. Hernandez-Andres, “Linear bases for representation of natural and artificial illuminants,” J. Opt. Soc. Am. A 14, 1007-1014 (1997). [CrossRef]
  20. A. Garcia-Beltran, J. L. Nieves, J. Hernandez-Andres, and J. Romero, “Linear bases for spectral reflectance functions of acrylic paints,” Color Res. Appl. 23, 39-45 (1998). [CrossRef]
  21. L. T. Maloney, “Physics-based approaches to modeling surface color perception,” in Color Vision: From Genes to Perception, K. R. Gengenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 387-422.
  22. O. Kohonen, J. Parkkinen, and T. Jaaskelainen, “Databases for spectral color science,” Color Res. Appl. 31, 381-390 (2006). [CrossRef]
  23. S. M. Nascimento, D. H. Foster, and K. Amano, “Psychophysical estimates of the number of spectral-reflectance basis functions needed to reproduce natural scenes,” J. Opt. Soc. Am. A 22, 1017-1022 (2005). [CrossRef]
  24. D. Y. Tzeng and R. S. Berns, “A review of principal component analysis and its applications to color technology,” Color Res. Appl. 30, 84-98 (2005). [CrossRef]
  25. N. Ohta, “Estimating absorption-bands of component dyes by means of principal component analysis,” Anal. Chem. 45, 553-557 (1973). [CrossRef]
  26. J. A. Worthey and M. H. Brill, “Principal components applied to modeling: dealing with the mean vector,” Color Res. Appl. 29, 261-266 (2004). [CrossRef]
  27. R. S. Berns, “A generic approach to color modeling,” Color Res. Appl. 22, 318-325 (1997). [CrossRef]
  28. E. Hecht and A. Zajac, Optics (Addison-Wesley, 1974), p. 565.
  29. L. P. Sung, M. E. Nadal, M. E. McKnight, E. Marx, and B. Laurenti, “Optical reflectance of metallic coatings: effect of aluminum flake orientation,” J. Coat. Technol. 74, 55-63(2002). [CrossRef]
  30. H. J. A. Saris, R. J. B. Gottenbos, and H. Vanhouwelingen, “Correlation between visual and instrumental color differences of metallic paint films,” Color Res. Appl. 15, 200-205(1990). [CrossRef]
  31. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C (Cambridge University, 1992), p. 994.
  32. E. Kirchner, G. J. van den Kieboom, L. Njo, R. Super, and R. Gottenbos, “Observation of visual texture of metallic and pearlescent materials,” Color Res. Appl. 32, 256-266 (2007). [CrossRef]
  33. B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express 9, 567-578 (2001). [CrossRef] [PubMed]
  34. S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. Express 15, 2691-2701 (2007). [CrossRef] [PubMed]
  35. F. W. Billmeyer and E. C. Carter, “Color and appearance of metallized paint films. II. Initial application of turbid-medium theory,” J. Coat. Technol. 48, 53-60 (1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited