OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 2 — Feb. 10, 2009

Algebraic reconstruction techniques for spectral reconstruction in diffuse optical tomography

Bernhard Brendel, Ronny Ziegler, and Tim Nielsen  »View Author Affiliations

Applied Optics, Vol. 47, Issue 34, pp. 6392-6403 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (896 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Reconstruction in diffuse optical tomography (DOT) necessitates solving the diffusion equation, which is nonlinear with respect to the parameters that have to be reconstructed. Currently applied solving methods are based on the linearization of the equation. For spectral three-dimensional reconstruction, the emerging equation system is too large for direct inversion, but the application of iterative methods is feasible. Computational effort and speed of convergence of these iterative methods are crucial since they determine the computation time of the reconstruction. In this paper, the iterative methods algebraic reconstruction technique (ART) and conjugated gradients (CGs) as well as a new modified ART method are investigated for spectral DOT reconstruction. The aim of the modified ART scheme is to speed up the convergence by considering the specific conditions of spectral reconstruction. As a result, it converges much faster to favorable results than conventional ART and CG methods.

© 2008 Optical Society of America

OCIS Codes
(170.3830) Medical optics and biotechnology : Mammography
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 25, 2008
Revised Manuscript: October 8, 2008
Manuscript Accepted: October 21, 2008
Published: November 24, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Bernhard Brendel, Ronny Ziegler, and Tim Nielsen, "Algebraic reconstruction techniques for spectral reconstruction in diffuse optical tomography," Appl. Opt. 47, 6392-6403 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  2. S. R. Arridge and M. Schweiger, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]
  3. M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699-1717 (1999). [CrossRef] [PubMed]
  4. D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927-2943(1999). [CrossRef]
  5. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98, 4420-4425 (2001). [CrossRef] [PubMed]
  6. B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry for finite-element image reconstruction,” Appl. Opt. 40, 588-600 (2001). [CrossRef]
  7. S. B. Colak, M. B. van der Mark, G. W 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143-1158(1999). [CrossRef]
  8. T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643108 (2007). [CrossRef]
  9. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256-258 (2004). [CrossRef] [PubMed]
  10. K. Lee, R. Choe, A. Corlu, S. D. Konecky, T. Durduran, and A. G. Yodh, “Artifact reduction in CW transmission diffuse optical tomography,” presented at the OSA Biomedical Optics Topical Meeting, Florida, 2004.
  11. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882-884(1998). [CrossRef]
  12. B. W. Pogue, S. Jiang, H. Deghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed. Opt. 9, 541-552 (2004). [CrossRef] [PubMed]
  13. X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo,” J. Biomed. Opt. 10, 0517041-0517048 (2005). [CrossRef]
  14. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005). [CrossRef] [PubMed]
  15. B. Brooksby, S. Srinivasan, S. Jiang, H. Deghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30, 1968-1970 (2005). [CrossRef] [PubMed]
  16. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339-2341 (2003). [CrossRef] [PubMed]
  17. B. Brendel and T. Nielsen, “Wavelength optimization in multispectral diffuse optical tomography considering uncertainties in absorption spectra,” Proc. SPIE 6629, 66290A (2007). [CrossRef]
  18. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  19. Y. Censor, “Row-action methods for huge and sparse systems and their applications,” SIAM Rev. 23, 444-466 (1981). [CrossRef]
  20. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (SIAM, 1994). [CrossRef]
  21. Y. Censor, “Parallel application of block-iterative methods in medical imaging and radiation therapy,” Math. Program. 42, 307-325 (1988). [CrossRef]
  22. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  23. D. J. Segelstein, “The complex refractive index of water,” Ph.D. thesis (University of Missouri-Kansas City, 1981).
  24. R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Determination of vis-NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy,” in Proceedings of Biomedical Topical Meetings (Optical Society of America, 2004), no. SF-5 on CD-ROM.
  25. S. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water,” http://omlc.ogi.edu/spectra/hemoglobin/summary.html.
  26. W. Bangerth, R. Hartmann, and G. Kanschat, “deal.II--a general-purpose object-oriented finite element library,” ACM Trans. Math. Softw. 33, 24 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited