OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 2 — Feb. 10, 2009

Measurement and comparison of the optical performance of an ophthalmic lens based on a Hartmann–Shack wavefront sensor in real viewing conditions

Chuanqing Zhou, Weichao Wang, Kun Yang, Xinyu Chai, and Qiushi Ren  »View Author Affiliations


Applied Optics, Vol. 47, Issue 34, pp. 6434-6441 (2008)
http://dx.doi.org/10.1364/AO.47.006434


View Full Text Article

Enhanced HTML    Acrobat PDF (1178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spatially resolved wavefront aberrations of four types of ophthalmic lens are measured with a custom-built apparatus based on a Hartmann–Shack wavefront sensor and specially designed positioning stage. The wavefront aberrations of the progressive addition lenses (PALs) are compared. The results show that the distribution depends much on the design philosophy, although the average values of root mean square in the entire measurement areas have no significant difference. It is feasible to evaluate the optical performance through the wavefront analysis of PALs, but how to meet the customized visual needs of patients and how to minimize the unwanted aberrations in some special zones are important points that should be taken into account.

© 2008 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(220.1010) Optical design and fabrication : Aberrations (global)
(330.7325) Vision, color, and visual optics : Visual optics, metrology

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: June 4, 2008
Revised Manuscript: September 11, 2008
Manuscript Accepted: October 22, 2008
Published: November 27, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Chuanqing Zhou, Weichao Wang, Kun Yang, Xinyu Chai, and Qiushi Ren, "Measurement and comparison of the optical performance of an ophthalmic lens based on a Hartmann-Shack wavefront sensor in real viewing conditions," Appl. Opt. 47, 6434-6441 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-47-34-6434


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Atchison, “Spectacle design: a review,” Appl. Opt. 31, 3579-3585 (1992). [CrossRef] [PubMed]
  2. D. A. Atchison and S. A. Tame, “Performance of aspheric spectacle lenses,” Clin. Exp. Optometry 75, 210-217 (1992). [CrossRef]
  3. C. Fowler, “Recent trends in progressive power lenses,” Ophthal. Physiol. Opt. 18, 234-237 (1998). [CrossRef]
  4. E. Keren, Y. Zac, F. Nabeth, K. Kreske, and A. Livnat, “Quantitative criteria for determining the quality of ophthalmic lenses,” Proc. SPIE 1752, 264-273 (1992). [CrossRef]
  5. D. A. Atchison, “Optical performance of progressive power lenses,” Clin. Exp. Optometry 70, 149-155 (1987). [CrossRef]
  6. E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optometry Vis. Sci. 80, 106-114(2003). [CrossRef]
  7. A. W. Dreher, J. Jethmalani, L. Warden, and L. Sverdrup, “Wavefront-guided spectacle lenses, ” Proc. SPIE 6426, 64260Q1-10 (2007).
  8. E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthal. Physiol. Opt. 24, 419-426 (2004). [CrossRef]
  9. J. E. Sheedy, “Correlation analysis of the optics of progressive addition lenses,” Optometry Vis. Sci. 81, 350-361 (2004). [CrossRef]
  10. J. E. Sheedy, “Progressive addition lenses--matching the specific lens to patient needs,” Optometry Vis. Sci. 75, 83-102(2004).
  11. J. E. Sheedy, R. F. Hardy and J. R. Hayes, “Progressive addition lenses--measurements and ratings,” Optometry Vis. Sci. 77, 23-39 (2006).
  12. G. Minkwitz, “On the surface astigmatism of a fixed symmetrical aspheric surface,” Opt. Acta 10, 223-227 (1963). [CrossRef]
  13. J. E. Sheedy, M. Buri, I. L. Bailey, J. Azus, and I. M. Borish, “Optics of progressive lenses,” Am. J. Optometry Physiol. Opt. 64, 90-99 (1987).
  14. D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, 1992).
  15. M. Rottenkolber and H. Podbielska, “High precision Twyman-Green interferometer for the measurement of ophthalmic surfaces,” Acta Ophthalmol. Scand. 74, 348-353 (1996). [CrossRef] [PubMed]
  16. C. Gonzalez, E. R. Villegas, L. Carretero, and A. Fimia, “Ronchi test for testing the powers of bifocal intraocular lenses,” Ophthal. Physiol. Opt. 17, 161-163 (1997).
  17. M. Rottenkolber and H. Podbielska, “Measuring ophthalmologic surfaces by means of moiré deflectometry,” Opt. Eng. 35, 1124-1133 (1996). [CrossRef]
  18. C. Castellini, F. Francini, and B. Tiribilli, “Hartmann test modification for measuring ophthalmic progressive lenses,” Appl. Opt. 33, 4120-4124 (1994). [CrossRef] [PubMed]
  19. C. W. Fowler, “Technical note: apparatus for comparison of progressive addition spectacle lenses,” Ophthal. Physiol. Opt. 26, 502-506 (2006). [CrossRef]
  20. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4, 329-351 (2004). [CrossRef] [PubMed]
  21. J. Liang, B. Grimm, G. Stefan, and J. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  22. H. C. Howland and B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508-1518 (1977). [CrossRef] [PubMed]
  23. J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wavefront aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449-2456 (1998). [CrossRef]
  24. I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438-5446 (2003). [CrossRef]
  25. J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optometry Vis. Sci. 82, 916-924 (2005). [CrossRef]
  26. J. Schwiegerling, “Scaling Zernike expansion coefficients to different pupil sizes,” J. Opt. Soc. Am. A 19, 1937-1945 (2002). [CrossRef]
  27. C. E. Campbell, “Matrix method to find a new set of Zernike coefficients from an original set when the aperture radius is changed,” J. Opt. Soc. Am. A 20, 209-217 (2003). [CrossRef]
  28. C. Y. Tang and W. N. Charman, “Effects of monochromatic and chromatic oblique aberrations on visual performance during spectacle lens wear,” Ophthal. Physiol. Opt. 12, 340-349(1992). [CrossRef]
  29. S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309-4323 (1999). [CrossRef]
  30. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defense against chromatic blur,” Nature 417, 174-176 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited