OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 2 — Feb. 10, 2009

Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors

Nicholas Devaney, Eugenie Dalimier, Thomas Farrell, Derek Coburn, Ruth Mackey, David Mackey, Francois Laurent, Elizabeth Daly, and Chris Dainty  »View Author Affiliations


Applied Optics, Vol. 47, Issue 35, pp. 6550-6562 (2008)
http://dx.doi.org/10.1364/AO.47.006550


View Full Text Article

Enhanced HTML    Acrobat PDF (1411 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The main applications of adaptive optics are the correction of the effects of atmospheric turbulence on ground-based telescopes and the correction of ocular aberrations in retinal imaging and visual simulation. The requirements for the wavefront corrector, usually a deformable mirror, will depend on the statistics of the aberrations to be corrected; here we compare the spatial statistics of wavefront aberrations expected in these two applications. We also use measured influence functions and numerical simulations to compare the performance of eight commercially available deformable mirrors for these tasks. The performance is studied as a function of the size of the optical pupil relative to the actuated area of the mirrors and as a function of the number of modes corrected. In the ocular case it is found that, with the exception of segmented mirrors, the performance is greatly enhanced by having a ring of actuators outside the optical pupil, as this improves the correction of the pupil edge. The effect is much smaller in the case of Kolmogorov wavefronts. It is also found that a high Strehl ratio can be obtained in the ocular case with a relatively low number of actuators if the stroke is sufficient. Increasing the number of actuators has more importance in the Kolmogorov case, even for the relatively weak turbulence considered here.

© 2008 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Imaging Systems

History
Original Manuscript: June 6, 2008
Revised Manuscript: September 15, 2008
Manuscript Accepted: November 5, 2008
Published: December 4, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Nicholas Devaney, Eugenie Dalimier, Thomas Farrell, Derek Coburn, Ruth Mackey, David Mackey, Francois Laurent, Elizabeth Daly, and Chris Dainty, "Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors," Appl. Opt. 47, 6550-6562 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-47-35-6550


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953). [CrossRef]
  2. V. P. Linnik, “On the possibility of reducting the influence of atmospheric seeing on the image quality of stars,” original 1957 article translated and reprinted in ESO Conference and Proceedings No. 48, F. Merkle, ed. (Garching, 1993), pp. 535-537.
  3. A. Buffington, F. S. Crawford, A. J. Muller, A. J. Schwemin, and R. G. Smits, “Active image restoration with a flexible mirror,” Proc. SPIE 75, 90-96 (1976).
  4. J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).
  5. A. W. Dreher, J. F. Bille, and R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804-808 (1989).
  6. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye's aberrations,” Opt. Express 8, 631-643 (2001).
  7. A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Herbert, and M. C. W. Campbell, “Adaptive optics scanning laser opthalmoscopy,” Opt. Express 10, 405-412 (2002).
  8. A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser opthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803(2008). [CrossRef]
  9. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive optics ultrahigh resolution optical coherence tomography,” Opt. Lett. 29, 2142-2144 (2004). [CrossRef]
  10. J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, and J. S. Werner, “Characterization of an AO-OCT system,” in Adaptive Optics for Industry and Medicine, Proceedings of the Sixth International Workshop, National University of Ireland, Galway, C. Dainty, ed. (Imperial College Press, 2008).
  11. G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266-275 (2002). [CrossRef]
  12. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634-S638(2002).
  13. P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refract. Surg. 33, 1721-1726 (2007). [CrossRef]
  14. K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).
  15. E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on contrast acuity as a function of light level,” J. Mod. Opt. 55, 791-803 (2008). [CrossRef]
  16. J. Liang, D. R. Williams, and D. T. Miller, “Supernornal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  17. E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056-1069 (2003).
  18. S. A. Cornelissen, P. A. Bierden, and T. G. Bifano, “A 4096 element continuous facesheet MEMS deformable mirror for high-contrast imaging,” Proc. SPIE 6888, 68880V (2008). [CrossRef]
  19. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537-1539 (2002). [CrossRef]
  20. M. A. Helmbrecht, T. Juneau, M. Hart, and N. Doble, “Performance of a high-stroke, segmented MEMS deformable-mirror technology,” Proc. SPIE 6113, 61130L (2006). [CrossRef]
  21. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225-238 (2004). [CrossRef]
  22. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazˆay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: application in the human eye,” Opt. Express 14, 8900-8916 (2006). [CrossRef]
  23. N. Devaney, D. Coburn, C. Coleman, J. C. Dainty, E. Dalimier, T. Farrell, D. Lara, D. Mackey, and R. Mackey, “Characterization of MEMs mirrors for use in atmospheric and ocular wavefront correction,” Proc. SPIE 6888, 688802 (2008). [CrossRef]
  24. T. Farrell, E. Daly, E. Dalimier, and C. Dainty, “Task-based assessment of deformable mirrors,” Proc. SPIE 6467, 64670F(2007). [CrossRef]
  25. E. Daly, E. Dalimier, and C. Dainty, “Requirements for MEMS Mirrors for Adaptive Optics in the Eye,” Proc. SPIE 6113, 611309 (2006). [CrossRef]
  26. E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275-4285 (2005). [CrossRef]
  27. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24, 2157-2174 (2007). [CrossRef]
  28. J. A. Díaz, C. Pizarro, and J. Arasa, “A single dispersive GRIN profile for the aging human lens,” J. Opt. Soc. Am. A 25, 250-261 (2008). [CrossRef]
  29. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics (North Holland, 1981), Vol 19, pp. 281-376.
  30. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372-1379 (1966). [CrossRef]
  31. F. Roddier, “The problematic of adaptive optics design,” in Adaptive Optics for Astronomy, D.M.Allon and J.-M.Mariotti, eds., NATO ASI Series C: Mathematical and Physical Sciences (Springer, 1993), Vol 324, pp. 89-111.
  32. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  33. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1959).
  34. American National Standards Institute (ANSI), “American National Standard for ophthalmics--methods for reporting optical aberrations of eyes,” ANSI Z80.28 (ANSI, 2004).
  35. J. Y. Wang and J. K. Markey, “Modal compensation of atmospheric turbulence phase distortion,” J. Opt. Soc. Am. 68, 77-87 (1978).
  36. G.-M. Dai, “Modal compensation of atmospheric turbulence with the use of Zernike polynomials and Karhunen-Loève functions,” J. Opt. Soc. Am. A 12, 2182-2193 (1995). [CrossRef]
  37. R. Hudgin, “Wave-front compensation error due to finite corrector-element size,” J. Opt. Soc. Am. 67, 393-395(1977). [CrossRef]
  38. R. Conan, “Mean-square residual error of a wavefront after propagation through atmospheric turbulence and after correction with Zernike polynomials,” J. Opt. Soc. Am. A 25, 526-536 (2008). [CrossRef]
  39. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793-1803 (2001). [CrossRef]
  40. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wavefront aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002). [CrossRef]
  41. T. Nirmaier, G. Pudasaini, and J. Bille, “Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor,” Opt. Express 11, 2704-2716 (2003).
  42. L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthal. Physiol. Opt. 22, 427-433 (2002). [CrossRef]
  43. D. T. Miller, L. N. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275-289 (2005). [CrossRef]
  44. M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of wavefront aberration in the human eye,” Opt. Lett. 27, 37-39 (2002). [CrossRef]
  45. G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34, 2968-2972 (1995).
  46. D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry,” Proc. SPIE 5688, 133-144 (2005). [CrossRef]
  47. T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Select Top. Quantum Electron. 5, 83-89 (1999). [CrossRef]
  48. C. Paterson, I. Munro, and J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175-185 (2000).
  49. G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (mems) deformable mirrors,” Opt. Commun. 271, 278-284 (2007). [CrossRef]
  50. S.Bonora and L. Poletto, “Push--pull membrane mirrors for adaptive optics,” Opt. Express 14, 11935-11944 (2006). [CrossRef]
  51. N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46, 4501-4514 (2007). [CrossRef]
  52. G. Vdovin, O. Soloviev, A. Samokhin, and M. Loktev, “Correction of low order aberrations using continuous deformable mirrors,” Opt. Express 16, 2859-2866 (2008). [CrossRef]
  53. C. M. Harding, R. A. Johnston, and R. Lane, “Fast simulation of a Kolmogorov phase screen,” Appl. Opt. 38, 2161-2170(1999). [CrossRef]
  54. R. Conan, C. Bradley, P. Hampton, O. Keskin, A. Hilton, and C. Blain, “Distributed modal command for a two-deformable-mirror adaptive optics system,” Appl. Opt. 46, 4329-4340(2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited