Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Mid-infrared gas sensing using a photonic bandgap fiber

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate methane sensing based on Fourier transform infrared spectroscopy using a hollow-core photonic bandgap fiber guiding in the mid-infrared and idler pulses from a femtosecond optical parametric oscillator. Transmission measurements are presented for several fibers, and sensing is demonstrated using a fiber whose bandgap overlaps the methane fundamental absorption lines. The gas filling process of the air core is described, and qualitative methane concentrations measurements to 1000ppm (parts in 106) are reported. Operation down to 50ppm based on our current experiment is predicted.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator

Ł. Kornaszewski, N. Gayraud, J. M. Stone, W. N. MacPherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid
Opt. Express 15(18) 11219-11224 (2007)

Gas sensing using air-guiding photonic bandgap fibers

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen
Opt. Express 12(17) 4080-4087 (2004)

Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber

Michael P. Buric, Kevin P. Chen, Joel Falk, and Steven D. Woodruff
Appl. Opt. 47(23) 4255-4261 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.