OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Linear image reconstruction for a diffuse optical mammography system in a noncompressed geometry using scattering fluid

Tim Nielsen, Bernhard Brendel, Ronny Ziegler, Michiel van Beek, Falk Uhlemann, Claas Bontus, and Thomas Koehler  »View Author Affiliations


Applied Optics, Vol. 48, Issue 10, pp. D1-D13 (2009)
http://dx.doi.org/10.1364/AO.48.0000D1


View Full Text Article

Enhanced HTML    Acrobat PDF (842 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffuse optical tomography (DOT) is a potential new imaging modality to detect or monitor breast lesions. Recently, Philips developed a new DOT system capable of transmission and fluorescence imaging, where the investigated breast is hanging freely into the measurement cup containing scattering fluid. We present a fast and robust image reconstruction algorithm that is used for the transmission measurements. The algorithm is based on the Rytov approximation. We show that this algorithm can be used over a wide range of tissue optical properties if the reconstruction is adapted to each patient. We use estimates of the breast shape and average tissue optical properties to initialize the reconstruction, which improves the image quality significantly. We demonstrate the capability of the measurement system and reconstruction to image breast lesions by clinical examples.

© 2008 Optical Society of America

OCIS Codes
(170.3830) Medical optics and biotechnology : Mammography
(170.6960) Medical optics and biotechnology : Tomography

History
Original Manuscript: June 3, 2008
Revised Manuscript: September 4, 2008
Manuscript Accepted: September 21, 2008
Published: October 21, 2008

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Tim Nielsen, Bernhard Brendel, Ronny Ziegler, Michiel van Beek, Falk Uhlemann, Claas Bontus, and Thomas Koehler, "Linear image reconstruction for a diffuse optical mammography system in a noncompressed geometry using scattering fluid," Appl. Opt. 48, D1-D13 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-10-D1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  2. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003). [CrossRef] [PubMed]
  3. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005). [CrossRef]
  4. P. Taronim, A. Toricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469-2488 (2005). [CrossRef]
  5. D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005). [CrossRef] [PubMed]
  6. X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005). [CrossRef] [PubMed]
  7. B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004). [CrossRef]
  8. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817-1824 (2001). [CrossRef]
  9. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256-265 (2000). [CrossRef]
  10. L. P. Bakker, M. van der Mark, M. van Beek, M. van der Voort, G. 't Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, “Optical fluorescence imaging of breast cancer,” in Biomedical Optics Conference (Optical Society of America, 2006), p. SH 56.
  11. V. Kolehmainen, S. R. Arridge, M. Vauhkonen, and J. P. Kaipio, “Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography,” Phys. Med. Biol. 45, 3267-3284 (2000). [CrossRef] [PubMed]
  12. V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge, “Recovery of piecewise constant coefficients in optical diffusion tomography,” Opt. Express. 7, 468-480 (2000). [CrossRef] [PubMed]
  13. M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, “Reconstructing absorption and diffusion shape profiles in optical tomography by a level set technique,” Opt. Lett. 31, 471-473 (2006). [CrossRef] [PubMed]
  14. S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004). [CrossRef] [PubMed]
  15. A. P. Gibson, L. C. Enfield, M. Schweiger, S. R. Arridge, M. Douek, and J. C. Hebden, “3d optical mammography of the uncompressed breast,” in Biomedical Optics (Optical Society of America, 2008), paper BSuE14.
  16. S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143-1158 (1999). [CrossRef]
  17. T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).
  18. Two of the sources and one detector have later been disabled, so that only 253×254 source detector combinations are measured.
  19. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  20. S. R. Arridge, Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]
  21. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002). [CrossRef] [PubMed]
  22. A. E. Cerussi, N. Shah, D. Hsiang, M. Compton, and B. Tromberg, “In vivo absorption, scattering and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 01-16 (2006). [CrossRef]
  23. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005). [CrossRef] [PubMed]
  24. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  25. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  26. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882-884 (1998). [CrossRef]
  27. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339-2341 (2003). [CrossRef] [PubMed]
  28. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256-258 (2004). [CrossRef] [PubMed]
  29. B. Brendel and T. Nielsen, “Wavelength optimization in multispectral diffuse optical tomography considering uncertainties in absorption spectra,” in European Conference on Biomedical Optics (Optical Society of America, 2007), paper 6629_9.
  30. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005). [CrossRef] [PubMed]
  31. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50, 2451-2468 (2005). [CrossRef] [PubMed]
  32. Y. Censor, “Row-action methods for huge and sparse systems and their applications,” SIAM Rev. 23, 444-466 (1981). [CrossRef]
  33. R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471-481 (1970). [CrossRef] [PubMed]
  34. S. Kaczmarz, “Angenäherte Auflösung von Systemen linearer Gleichungen,” Bull. Acad. Polon. Sci. Lett. A 35, 355-357 (1937).
  35. F. Natterer, Mathematical Methods in Image Reconstruction (Society for Industrial and Applied Mathematics, 2001). [CrossRef]
  36. G. L. Zeng and G. T. Gullberg, “Unmatched projector/backprojector pairs in an iterative reconstruction algorithm,” IEEE Trans. Med. Imaging 19, 548-555 (2000). [CrossRef] [PubMed]
  37. K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691-701 (1995). [CrossRef] [PubMed]
  38. B. Brooksby, “Combining near infrared tomography and magnetic resonance imaging to improve breast tissue chromophore and scattering assessment,” Ph.D. thesis (Thayer School of Engineering, Dartmouth College, 2005).
  39. This fraction is of course scan specific. For the simulation the fraction is 2.3%.
  40. R. Ziegler, B. Brendel, A. Schipper, R. Habers, M. v. Beek, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical tomography systems: I. theory and experiment,” Phys. Med. Biol. (to be published).
  41. S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Spectroscopic diffuse optical tomography of the breast: initial validation study in a cyst model,” Mol. Imaging Biol. (to be published).
  42. S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Diffuse optical tomography of the breast: discrimination of malignant from benign breast tissue,” Invest. Radiol. (to be published).
  43. R. Ziegler, T. Nielsen, T. Koehler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Reconstruction of absorption and fluorescence contrast for scanning time-domain fluorescence mammography,” in Progress in Biomedical Optics and Imaging--Optical Tomography and Spectroscopy of Tissue VII, Vol. 8 (SPIE Press, 2007), pp. 64340H1-64340H11.
  44. B. W. Pogue, C. Willscher, T. O. McBride, U. L. Österberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693-2700 (2000). [CrossRef]
  45. R. Ziegler, T. Nielsen, T. Köhler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom,” Appl. Opt. (to be published).
  46. C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007). [CrossRef] [PubMed]
  47. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: Optical differentiation with us-guided optical imaging reconstruction,” Radiology 57-66 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited