OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography

Hamid Dehghani, Brian R. White, Benjamin W. Zeff, Andrew Tizzard, and Joseph P. Culver  »View Author Affiliations


Applied Optics, Vol. 48, Issue 10, pp. D137-D143 (2009)
http://dx.doi.org/10.1364/AO.48.00D137


View Full Text Article

Enhanced HTML    Acrobat PDF (717 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of diffuse optical tomography (DOT) instrumentation for neuroimaging of humans is challenging due to the large size and the geometry of the head and the desire to distinguish signals at different depths. One approach to this problem is to use dense imaging arrays that incorporate measurements at different source–detector distances. We previously developed a high-density DOT system that is able to obtain retinotopic measurements in agreement with functional magnetic resonance imaging and positron emission tomography. Further extension of high-density DOT neuroimaging necessitates a thorough study of the measurement and imaging sensitivity that incorporates the complex geometry of the head—including the head curvature and layered tissue structure. We present numerical simulations using a finite element model of the adult head to study the sensitivity of the measured signal as a function of the imaging array and data sampling strategy. Specifically, we quantify the imaging sensitivity available within the brain (including depths beyond superficial cortical gyri) as a function of increasing the maximum source–detector separation included in the data. Through the use of depth related sensitivity analysis, it is shown that for a rectangular grid [with 1.3 cm first nearest neighbor (NN) spacing], second NN measurements are sufficient to record absorption changes along the surface of the brain’s cortical gyri (brain tissue depth < 5 mm ). The use of fourth and fifth NN measurements would permit imaging down into the cortical sulci (brain tissue depth > 15 mm ).

© 2009 Optical Society of America

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(110.6955) Imaging systems : Tomographic imaging

History
Original Manuscript: August 26, 2008
Revised Manuscript: December 18, 2008
Manuscript Accepted: January 15, 2009
Published: February 23, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Hamid Dehghani, Brian R. White, Benjamin W. Zeff, Andrew Tizzard, and Joseph P. Culver, "Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography," Appl. Opt. 48, D137-D143 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-10-D137


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Strangman, D. A. Boas, and J. P. Sutton, “Noninvasive neuroimaging using near-infrared light,” Biol. Psychiat. 52, 679-693 (2002). [CrossRef] [PubMed]
  2. H. Obrig and A. Villringer, “Beyond the visible--imaging the human brain with light,” J. Cereb. Blood Flow Metab. 23, 1-18 (2003). [CrossRef]
  3. S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 5, 513-526 (2005).
  4. H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, “Optical topography: practical problems and new applications,” Appl. Opt. 42, 3054-3062 (2003). [CrossRef] [PubMed]
  5. M. Suda, K. Morimoto, A. Obata, H. Koizumi, and A. Maki, “Emotional responses to music: towards scientific perspectives on music therapy,” NeuroReport 19, 75-78 (2008). [CrossRef] [PubMed]
  6. Y. Fuchino, M. Nagao, T. Katura, M. Bando, M. Naito, A. Maki, K. Nakamura, T. Hayashi, H. Koizumi, and T. Yoro, “High cognitive function of an ALS patient in the totally locked-in state,” Neurosci. Lett. Suppl. 435, 85-89 (2008). [CrossRef]
  7. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256-265(2000). [CrossRef]
  8. J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117-1130 (2004). [CrossRef] [PubMed]
  9. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10, 011013 (2005). [CrossRef]
  10. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. USA 104, 12169-12174 (Jul 17 2007). [CrossRef]
  11. M. S. Patterson, M. S. Chance, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  12. A. Gibson, J. Riley, M. Schweiger, J. C. Hebden, S. R. Arridge, and D. T. Delpy, “A method for generating patient specific finite element meshes for head modelling,” Phys. Med. Biol. 48, 481-495 (2003). [CrossRef] [PubMed]
  13. A. Tizzard, L. Horesh, R. J. Yerworth, D. S. Holder, and R. H. Bayford, “Generating accurate finite element meshes for the forward model of the human head in EIT,” Phys. Meas. 26, S251-S261 (2005). [CrossRef]
  14. A. Torricelli, A. Pifferi, A. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227-2237 (2001). [CrossRef] [PubMed]
  15. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction algorithms,” Commun. Numer. Methods Eng. , doi: 10.1002/cnm.1162. [PubMed]
  16. S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026-8037 (1995). [CrossRef] [PubMed]
  17. R. Penrose, “A generalized inverse for matrices,” Proc. Cambridge Philos. Soc. 51, 406-413 (1955). [CrossRef]
  18. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett. 28, 2061-2063 (2003). [CrossRef] [PubMed]
  19. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135-145 (2003). [CrossRef] [PubMed]
  20. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Appl. Opt. 26, 701-703(2001).
  21. B. W. Pogue, T. McBride, U. Osterberg, and K. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4, 270-286 (1999). [CrossRef] [PubMed]
  22. H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659-1670 (2000). [CrossRef]
  23. J. Ripoll, M. Nieto-Vesperinas, and S. R. Arridge, “Effect of roughness in nondiffusive regions within diffusive media,” J. Opt. Soc. Am. A 18, 940-947 (2001). [CrossRef]
  24. Y. L. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing interparameter crosstalk in DC optical tomography,” Opt. Express 9, 97-109(2001). [CrossRef] [PubMed]
  25. A. Custo, W. M. I. Wells, A. H. Barnett, E. M. C. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Appl. Opt. 45, 4747-4755 (2006). [CrossRef] [PubMed]
  26. T. Durduran, G. Q. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29, 1766-1768 (2004). [CrossRef] [PubMed]
  27. C. Zhou, R. Choe, N. Shah, T. Durduran, G. Q. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12, 051903 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited