OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser

Jia Wang, Shudong Jiang, Keith D. Paulsen, and Brian W. Pogue  »View Author Affiliations

Applied Optics, Vol. 48, Issue 10, pp. D198-D207 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1105 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Frequency-domain near-infrared (NIR) diffuse spectral tomography with a mode-locked Ti:sapphire laser is presented, providing tunable multiwavelength quantitative spectroscopy with maximal power for thick tissue imaging. The system was developed to show that intrinsically high stability can be achieved with many wavelengths in the NIR range, using a mode-locked signal of 80 MHz with heterodyned lock-in detection. The effect of cumulative noise from multiple wavelengths of data on the reconstruction process was studied, and it was shown that inclusion of more wavelengths can reduce skew in the noise distribution. This normalization of the data variance then minimizes errors in estimation of chromophore concentrations. Simulations and tissue phantom experiments were used to quantify this improvement in image accuracy for recovery of tissue hemoglobin and oxygen saturation.

© 2009 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.6360) Spectroscopy : Spectroscopy, laser

Original Manuscript: September 8, 2008
Revised Manuscript: January 16, 2009
Manuscript Accepted: January 30, 2009
Published: March 2, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Jia Wang, Shudong Jiang, Keith D. Paulsen, and Brian W. Pogue, "Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser," Appl. Opt. 48, D198-D207 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Pasqualini, G. Vaudo, S. Fantini, M. A. Franceschini, F. Paoletti, S. Innocente, R. Palumbo, and E. Mannarino, “Near-infrared spectroscopy, scintigraphy and transcutaneous oximetry in the diagnosis of peripheral arterial disease,” Atherosclerosis 135, S17-S17 (1997). [CrossRef]
  2. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500-2512 (2000). [CrossRef]
  3. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817-1824 (2001). [CrossRef]
  4. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003). [CrossRef] [PubMed]
  5. E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381-3404 (1998). [CrossRef] [PubMed]
  6. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256-258 (2004). [CrossRef] [PubMed]
  7. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339-2341 (2003). [CrossRef] [PubMed]
  8. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering NIR tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858-1869 (2005). [CrossRef] [PubMed]
  9. J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency-domain spectral data,” J. Biomed. Opt. 13, 041305 (2008). [CrossRef] [PubMed]
  10. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498-6510 (2000). [CrossRef]
  11. C. D'Andrea, L. Spinellil, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14, 1888-1898 (2006). [CrossRef] [PubMed]
  12. V Toronov , E. D'Amico, D. Hueber, E. Gratton, B. Barbieri, and A. Webb, “Optimization of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain,” Opt. Express 11, 2717-2729 (2003). [PubMed]
  13. M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155-168 (1990). [CrossRef]
  14. K. D. Paulsen, and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691-701 (1995). [CrossRef] [PubMed]
  15. B. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199-209 (2003). [CrossRef]
  16. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005). [CrossRef] [PubMed]
  17. S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 4, 513-526 (2005). [PubMed]
  18. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006). [CrossRef] [PubMed]
  19. B. Brooksby, “Combined near-infrared tomography and MRI to improve breast tissue chromophore and scattering assessment,” Ph.D. dissertation (Dartmouth College, 2005).
  20. S. Jiang, B. W. Pogue, and K. D. Paulsen, “Dynamic frequency domain tomography system and phantom test,” Proc. SPIE 6431, 64310G (2007). [CrossRef]
  21. H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies,” Appl. Opt. 44, 2177-2188 (2005). [CrossRef] [PubMed]
  22. M. E. Eames, J. Wang, B. W. Pogue, and H. Dehghani, “Wavelength band optimisation in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden,” J. Biomed. Opt. 13, 054037(2008). [CrossRef] [PubMed]
  23. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. B. Weaver, C. Kogel, and S. P. Poplack, “Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate MR structure,” J. Biomed. Opt. 10, 050504 (2005).
  24. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066-4082 (2007). [CrossRef] [PubMed]
  25. D. Piao, S. Jiang, S. Srinivasan, H. Dehghani, and B. W. Pogue, “Video-rate near-infrared optical tomography using spectrally-encoded parallel light delivery,” Opt. Lett. 30, 2593-2595 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited