OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei

Cyrus Amoozegar, Michael G. Giacomelli, Justin D. Keener, Kevin J. Chalut, and Adam Wax  »View Author Affiliations


Applied Optics, Vol. 48, Issue 10, pp. D20-D25 (2009)
http://dx.doi.org/10.1364/AO.48.000D20


View Full Text Article

Enhanced HTML    Acrobat PDF (477 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Inverse light scattering analysis (ILSA) seeks to associate measured scattering properties with the most probable theoretical scattering distribution, making it a useful tool for assessing structure in biological materials. The accuracy of ILSA depends on the compatibility of the light scattering geometry with the light scattering model. In this study, we compare the accuracy obtained when analyzing light scattering data from spheroids using a numerical implementation of Mie theory, and the T matrix, a numerical method of solving light scattering from spheroids. Our experimental data are acquired using novel optical phantoms containing spheroidal scatterers and angle-resolved low-coherence interferometry, a depth- and angle-resolved light scattering measurement modality. The results show that Mie theory can accurately assess spheroidal structure despite the geometric incompatibility provided measurements are taken in multiple orientations of the sample relative to the incident polarization and the measured scattering angle. In comparison, analysis using the T-matrix method is highly accurate and more reliable yet requires measurements from only a single orientation.

© 2009 Optical Society of America

OCIS Codes
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.1350) Scattering : Backscattering
(290.3200) Scattering : Inverse scattering
(290.4020) Scattering : Mie theory

History
Original Manuscript: June 25, 2008
Revised Manuscript: November 15, 2008
Manuscript Accepted: November 24, 2008
Published: January 5, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Cyrus Amoozegar, Michael G. Giacomelli, Justin D. Keener, Kevin J. Chalut, and Adam Wax, "Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei," Appl. Opt. 48, D20-D25 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-10-D20


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. W. Boone, G. J. Kelloff, and V. E. Steele, “Natural history of intraepithelial neoplasia in humans with implications for cancer chemoprevention strategy,” Cancer Res. 52, 1651-1659(1992). [PubMed]
  2. F. Guilak, “Compression-induced changes in the shape and volume of the chondrocyte nucleus,” J. Biomech. 28, 1529-1541 (1995). [CrossRef] [PubMed]
  3. C. S. Chen and D. E. Ingber, “Tensegrity and mechanoregulation: from skeleton to cytoskeleton,” Osteoarthritis Cartilage 7, 81-94 (1999). [CrossRef] [PubMed]
  4. J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11, 3473-3484 (2003). [CrossRef] [PubMed]
  5. A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256-2264 (2002). [CrossRef] [PubMed]
  6. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Vol. xiv, p. 530.
  7. J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938(2005). [CrossRef] [PubMed]
  8. V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999). [CrossRef]
  9. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221-228(2000). [CrossRef] [PubMed]
  10. K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J Biomed. Opt. 7, 148-156 (2002). [CrossRef] [PubMed]
  11. J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c.,” Opt Lett 32, 2517-2519 (2007). [CrossRef] [PubMed]
  12. K. J. Chalut, L. A. Kresty, J. W. Pyhtila, R. Nines, M. Baird, V. E. Steele, and A. Wax, “In Situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.,” Cancer Epidemiol Biomarkers Prev. 16 , 223-227 (2007). [CrossRef] [PubMed]
  13. A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boon, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556-3559(2003). [PubMed]
  14. A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, and C. W. Boone, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J Biomed. Opt. 10, 051604 (2005). [CrossRef] [PubMed]
  15. M. I. Mishchenko, L. D. Travis, and J. W. Hovenier, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, 2000).
  16. N. V. Voshchinnikov, V. B. Il'in, T. Henning, B. Michel, and V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877-893(2000). [CrossRef]
  17. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735-2748 (1998). [CrossRef]
  18. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002). [CrossRef] [PubMed]
  19. D. D. Duncan and M. E. Thomas, “Particle shape as revealed by spectral depolarization,” Appl Opt 46, 6185-6191 (2007). [CrossRef] [PubMed]
  20. J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, “Application of Mie theory to determine the structure of spheroidal scatterers in biological materials,” Opt. Lett. 32, 1326-1328(2007). [CrossRef] [PubMed]
  21. K. J. Chalut, M. Giacomelli, and A. Wax, “Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries,” J. Opt. Soc. Am. A 25, 1866-1874 (2008)
  22. K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94, 4948-4956 (2008). [CrossRef] [PubMed]
  23. J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D'Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett's esophagus using angle-resolved low coherence interferometry,” Gastrointest. Endosc. 65, 487-491(2007). [CrossRef] [PubMed]
  24. K. M. Keville, E. I. Franses, and J. M. Caruthers, “Preparation and characterization of monodisperse polymer microspheroids,” J. Colloid Interface Sci. 144, 103-126 (1991). [CrossRef]
  25. J. W. Pyhtila, M. H., A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11, 034022 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited