OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

CT imaging of diffuse medium by time-resolved measurement of backscattered light

Takeshi Namita, Yuji Kato, and Koichi Shimizu  »View Author Affiliations

Applied Optics, Vol. 48, Issue 10, pp. D208-D217 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Backscattered light was used to reconstruct cross-sectional images of absorption distributions in diffuse media. For efficient and accurate reconstruction, the inverse problem was solved for one dimension, thereby yielding the absorption distribution in a depth direction. A cross-sectional image or three- dimensional structure is reconstructed by shifting a source–detector pair along the object surface. The object is divided into imaginary layers to solve the inverse problem. This solution’s accuracy is further improved by solving the problem for two groups of layers successively instead of solving for all layers simultaneously. The technique’s effectiveness was verified using solid phantoms and biological tissues.

© 2009 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography
(170.7050) Medical optics and biotechnology : Turbid media

Original Manuscript: August 8, 2008
Revised Manuscript: January 20, 2009
Manuscript Accepted: January 25, 2009
Published: March 2, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Takeshi Namita, Yuji Kato, and Koichi Shimizu, "CT imaging of diffuse medium by time-resolved measurement of backscattered light," Appl. Opt. 48, D208-D217 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. R. Hintz, D. A. Benaron, J. P. van Houten, J. L. Duckworth, F. W. H. Liu, S. D. Spilman, D. K. Stevenson, and W.-F. Cheong, “Stationary headband for clinical time-of-flight optical imaging at the bedside,” Photochem. Photobiol. 68, 361-369 (1998). [CrossRef] [PubMed]
  2. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155-4166(2002). [CrossRef] [PubMed]
  3. Y. Minagawa-Kawai, K. Mori, J. C. Hebden, and E. Dupoux, “Optical imaging of infants' neurocognitive development: Recent advances and perspectives,” Dev. Neurobiol. 68, 712-728 (2008). [PubMed]
  4. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317-1334 (1990). [CrossRef] [PubMed]
  5. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammography and first in vivo applications,” Appl. Opt. 38, 2927-2943 (1999). [CrossRef]
  6. S. B. Colak, M. B. van der Mark, G. W.'t Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Quantum. Electron. 5, 1143-1158 (1999). [CrossRef]
  7. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211-218 (2001). [CrossRef] [PubMed]
  8. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003). [CrossRef] [PubMed]
  9. A. Bassi, L. Spinelli, C. D'Andrea, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt. 11, 054035 (2006). [CrossRef] [PubMed]
  10. L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt. 46, 3628-3638 (2007). [CrossRef] [PubMed]
  11. S. R. Arridge and M. Schweiger, “The use of multiple data types in time-resolved optical absorption and scattering tomography (TOAST),” Proc. SPIE 2035, 218-229 (1993). [CrossRef]
  12. S. R. Arridge, “Inverse methods for optical tomography,” in Information Processing in Medical Imaging '93, H. H. Barrett and A. F. Gmitro, eds. (Springer, 1993), pp. 259-277. [CrossRef]
  13. F. Gao, H. Niu, H. Zhao, and H. Zhang, “The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions,” Image Vision Comput. 16, 703-712 (1998). [CrossRef]
  14. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takeda, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595-3602 (1999). [CrossRef]
  15. F. Gao, Y. Tanikawa, H. Zhao, and Y. Yamada, “Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by using the generalized pulse spectrum technique,” Appl. Opt. 41, 7346-7358 (2002). [CrossRef] [PubMed]
  16. J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612-4620 (2003). [CrossRef] [PubMed]
  17. R. Endoh, A. Suzuki, M. Fujii, and K. Nakayama, “Fundamental study on diffuse reflective optical tomography,” Phys. Med. Biol. 49, 1881-1889 (2004). [CrossRef] [PubMed]
  18. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43, 3037-3047 (2004). [CrossRef] [PubMed]
  19. Y. Ueda, T. Yamanaka, D. Yamashita, T. Suzuki, E. Ohmae, M. Oda, and Y. Yamashita, “Reflectance diffuse optical tomography: Its application to human brain mapping,” Jpn. J. Appl. Phys. 44, L1203-L1206 (2005). [CrossRef]
  20. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12, 034019 (2007). [CrossRef] [PubMed]
  21. J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express 15, 16400-16412 (2007). [CrossRef] [PubMed]
  22. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879-896 (2001). [CrossRef] [PubMed]
  23. Y. Tsuchiya, “Photon path distribution and optical responses of turbid media: theoretical analysis based on the microscopic Beer-Lambert law,” Phys. Med. Biol. 46, 2067-2084 (2001). [PubMed]
  24. A. Awata, Y. Kato, and K. Shimizu, “Cross-sectional imaging of absorption distribution in biological tissue using backscattered light,” IEICE Trans. E85-D, 124-132 (2002).
  25. M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699-1717 (1999). [CrossRef] [PubMed]
  26. F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by using full time-resolved data,” Appl. Opt. 41, 778-791 (2002). [CrossRef] [PubMed]
  27. T. Namita, Y. Kato, and K. Shimizu, “CT imaging of biological tissue using backscattered light,” in Topical Meeting Biomedical Optics, OSA Technical Digest Series (Optical Society of America, 2008), paper BMD35.
  28. P. van der Zee and D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo method,” Adv. Exp. Med. Biol. 215, 179-191 (1987). [PubMed]
  29. J. Mobley and T. Vo-Vinh, “Optical properties of tissue,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC, 2003), pp. 2-1-2-75.
  30. A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957-1975 (1995). [CrossRef] [PubMed]
  31. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Optical Engineering Press, 2000).
  32. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331-2336(1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited