OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Near-infrared spectral imaging of the female breast for quantitative oximetry in optical mammography

Yang Yu, Ning Liu, Angelo Sassaroli, and Sergio Fantini  »View Author Affiliations


Applied Optics, Vol. 48, Issue 10, pp. D225-D235 (2009)
http://dx.doi.org/10.1364/AO.48.00D225


View Full Text Article

Enhanced HTML    Acrobat PDF (1308 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a hybrid continuous-wave, frequency-domain instrument for near-infrared spectral imaging of the female breast based on a tandem, planar scanning of one illumination optical fiber and one collection optical fiber configured in a transmission geometry. The spatial sampling rate of 25   points / cm 2 is increased to 400 points / cm 2 by postprocessing the data with a 2D cubic spline interpolation. We then apply a previously developed spatial second-derivative algorithm to an edge-corrected intensity image (N-image) to enhance the visibility and resolution of optical inhomogeneities in breast tissue such as blood vessels and tumors. The spectral data at each image pixel consist of 515-point spectra over the 650 900 nm wavelength range, thus featuring a spectral density of two data points per nanometer. We process the measured spectra with a paired-wavelength spectral analysis method to quantify the oxygen saturation of detected optical inhomogeneities, under the assumption that they feature a locally higher hemoglobin concentration. Our initial measurements on two healthy human subjects have generated high-resolution optical mammograms displaying a network of blood vessels with values of hemoglobin saturation typically falling within the 60%–95% range, which is physiologically reasonable. This approach to spectral imaging and oximetry of the breast has the potential to efficiently exploit the high intrinsic contrast provided by hemoglobin in breast tissue and to contribute a useful tool in the detection, diagnosis, and monitoring of breast pathologies.

© 2009 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3830) Medical optics and biotechnology : Mammography
(170.5280) Medical optics and biotechnology : Photon migration

History
Original Manuscript: September 12, 2008
Revised Manuscript: January 9, 2009
Manuscript Accepted: January 18, 2009
Published: March 2, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Yang Yu, Ning Liu, Angelo Sassaroli, and Sergio Fantini, "Near-infrared spectral imaging of the female breast for quantitative oximetry in optical mammography," Appl. Opt. 48, D225-D235 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-10-D225


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun, “Cancer statistics, 2008,” CA Cancer J. Clin. 58, 71-96 (2008). [CrossRef] [PubMed]
  2. M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721-727 (1929).
  3. D. J. Watmough, “A light torch for the transillumination of female breast tissues,” Br. J. Radiol. 55, 142-146 (1982). [CrossRef] [PubMed]
  4. G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, B.-M. Hung, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70-74 (1984). [CrossRef] [PubMed]
  5. B. Ohlsson, J. Gundersen, and D. M. Nilsson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701-706 (1980). [CrossRef] [PubMed]
  6. V. Marshall, D. C. Williams, and K. D. Smith, “Diaphanography as a means of detecting breast cancer,” Radiology 150, 339-343 (1984).
  7. H. Wallberg, A. Alveryd, K. Nasiell, P. Sundelin, U. Bergvall, and S. Troell, “Diaphanography in benign breast disorders. Correlation with clinical examination, mammography, cytology and histology,” Acta Radiol. Diagn. 26, 129-136 (1985).
  8. B. Monsees, J. M. Destouet, and W. G. Totty, “Light scanning versus mammography in breast cancer detection,” Radiology 163, 463-465 (1987). [PubMed]
  9. G. E. Geslien, J. R. Fisher, and C. DeLaney, “Transillumination in breast cancer detection: screening failures and potential,” AJR Am. J. Roentgenol. 144, 619-622 (1985). [PubMed]
  10. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of optical properties,” Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  11. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988). [CrossRef] [PubMed]
  12. D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463-1466 (1993). [CrossRef] [PubMed]
  13. B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423-3427 (1993). [CrossRef] [PubMed]
  14. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997). [CrossRef] [PubMed]
  15. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1, 391-403 (1997). [CrossRef] [PubMed]
  16. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency-domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500-2513 (2000). [CrossRef]
  17. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005). [CrossRef] [PubMed]
  18. T. Dierkes, D. Grosenick, K. T. Moesta, M. Moller, P. M. Schlag, H. Rinneberg, and S. Arridge, “Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data,” Phys. Med. Biol. 50, 2519-2542(2005). [CrossRef] [PubMed]
  19. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “in vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006). [CrossRef] [PubMed]
  20. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60-71(2002). [CrossRef] [PubMed]
  21. R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018-3036 (2001). [CrossRef]
  22. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927-2943(1999). [CrossRef]
  23. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997). [CrossRef] [PubMed]
  24. J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, “Ten-year risk of false positive screening mammograms and clinical breast examinations ,” N. Engl. J. Med. 338, 1089-1096 (1998).
  25. C. L. Christiansen, F. Wang, M. B. Barton, W. Kreuter, J. G. Elmore, A. E. Gelfand, and S. W. Fletcher, “Predicting the cumulative risk of false-positive mammograms,” J. Natl. Cancer Inst. 92, 1657-1666 (2000). [CrossRef] [PubMed]
  26. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443-2451 (2008). [CrossRef] [PubMed]
  27. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135-145 (2003). [CrossRef] [PubMed]
  28. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541-552 (2004). [CrossRef] [PubMed]
  29. G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007). [CrossRef] [PubMed]
  30. E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152-1160 (2004). [CrossRef] [PubMed]
  31. A. Bassi, L. Spinelli, C. D'Andrea, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt. 11054035 (2006). [CrossRef] [PubMed]
  32. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170-3186 (2003). [CrossRef] [PubMed]
  33. B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7, 279-285 (2005). [CrossRef]
  34. Y. Painchaud, S. Chatigny, M. Morin, M. L. Vernon, and P. Beaudry, “Dual-spatial integration for longitudinal localization of inclusions in turbid media,” Appl. Opt. 39, 4730-4732(2000). [CrossRef]
  35. D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evalutaion of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007). [CrossRef]
  36. V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003). [CrossRef] [PubMed]
  37. E. L. Heffer and S. Fantini, “Quantitative oximetry of breast tumors: a near-infrared method that identifies two optimal wavelengths for each tumor,” Appl. Opt. 41, 3827-3839 (2002). [CrossRef] [PubMed]
  38. S. Fantini, E. L. Heffer, M. A. Franceschini, L. Gotz, A. Heinig, S. Heywang-Kobrunner, O. Schutz, and H. Siebold, “Optical mammography with intensity-modulated light,” in Inter-institute Workshop on in Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, 2000), pp. 111-117.
  39. S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128-2138 (1994). [CrossRef]
  40. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949-957 (1997). [CrossRef] [PubMed]
  41. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498-6507 (2000). [CrossRef]
  42. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149-157 (1996). [CrossRef] [PubMed]
  43. E. H. W. Meijering, “Spline interpolation in medical imaging: comparison with other convolution-based approaches,” in Signal Processing X: Theories and Applications, M. Gabbouj and P. Kuosmanen, ed. (The European Association for Signal Processing, 2000), pp. 1989-1996.
  44. S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005). [PubMed]
  45. N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt. 12, 051602 (2007). [CrossRef] [PubMed]
  46. S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal. 9, 1143-1156 (2007). [CrossRef] [PubMed]
  47. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002). [CrossRef] [PubMed]
  48. V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41-46 (2001). [CrossRef] [PubMed]
  49. N. Liu, A. Sassaroli, and S. Fantini, “Two-dimensional phased arrays of sources and detectors for depth discrimination in diffuse optical imaging,” J. Biomed. Opt. 10051801(2005). [CrossRef] [PubMed]
  50. N. Liu, A. Sassaroli, M. A. Zucker, and S. Fantini, “Three-element phased-array approach to diffuse optical imaging based on postprocessing of continuous-wave data,” Opt. Lett. 30, 281-283 (2005). [CrossRef] [PubMed]
  51. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 4014-4019 (2007). [CrossRef] [PubMed]
  52. J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13 (4), 041305 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (9164 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited