OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Tissue drug concentration determines whether fluorescence or absorption measurements are more sensitive in diffuse optical tomography of exogenous contrast agents

Scott C. Davis, Brian W. Pogue, Hamid Dehghani, and Keith D. Paulsen  »View Author Affiliations


Applied Optics, Vol. 48, Issue 10, pp. D262-D272 (2009)
http://dx.doi.org/10.1364/AO.48.00D262


View Full Text Article

Enhanced HTML    Acrobat PDF (934 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The measurement sensitivities of absorbing and fluorescing objects in tissue are compared to determine conditions for which fluorescence data are favorable over those derived from absorption. A simulated human breast volume was used to model the relative perturbation in boundary data caused by a deeply embedded anomaly containing elevated concentrations of theoretical exogenous contrast agents with absorption properties resembling lutetium texaphyrin (LuTex) and Indocyanine Green (ICG). Synthetic data were used to produce quantum yield values representing the transition between conditions favorable to fluorescence versus absorption imaging. The parameters explored include tumor-to-background contrast, background drug concentration, and excitation light filtering efficiency. Drug concentration in the background was the primary factor that determined which contrast mechanism provided the more sensitive measurements. Specifically, fluorescence measurements are favorable if background drug concentrations are below 135 200 nM for LuTex and 25 50 nM for ICG, while absorption measurements are more sensitive above these ranges.

© 2009 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography
(170.7050) Medical optics and biotechnology : Turbid media

History
Original Manuscript: September 5, 2008
Revised Manuscript: January 20, 2009
Manuscript Accepted: January 23, 2009
Published: March 12, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Scott C. Davis, Brian W. Pogue, Hamid Dehghani, and Keith D. Paulsen, "Tissue drug concentration determines whether fluorescence or absorption measurements are more sensitive in diffuse optical tomography of exogenous contrast agents," Appl. Opt. 48, D262-D272 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-10-D262


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757-760 (2002). [CrossRef] [PubMed]
  2. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901-911 (2003). [CrossRef] [PubMed]
  3. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004). [CrossRef] [PubMed]
  4. E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Mol. Med. 4, 419-430 (2004). [CrossRef] [PubMed]
  5. R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492-500 (2004). [CrossRef] [PubMed]
  6. G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging 24, 878-885 (2005). [CrossRef] [PubMed]
  7. S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express 13, 2564-2577(2005). [CrossRef] [PubMed]
  8. E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10, 044019 (2005). [CrossRef]
  9. A. Godavarty, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study,” Radiology (Oak Brook, Ill.) 235, 148-154(2005).
  10. A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488-496 (2004). [CrossRef] [PubMed]
  11. A. Godavarty, C. Zhang, M. J. Eppstein, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31, 183-190 (2004). [CrossRef] [PubMed]
  12. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716(2007). [CrossRef] [PubMed]
  13. M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94-102 (2000). [CrossRef] [PubMed]
  14. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940-2950 (2003). [CrossRef] [PubMed]
  15. G. Gulsen, H. Yu, J. Wang, O. Nalcioglu, S. Merritt, F. Bevilacqua, A. J. Durkin, D. J. Cuccia, R. Lanning, and B. J. Tromberg, “Congruent MRI and near-infrared spectroscopy for functional and structural imaging of tumors,” Technol. Cancer Res. Treat. 1, 497-505 (2002).
  16. E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics 1, 526-530 (2007). [CrossRef]
  17. B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53, 837-859 (2008). [CrossRef] [PubMed]
  18. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039-1047(2003). [CrossRef] [PubMed]
  19. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767-2772 (2000). [CrossRef] [PubMed]
  20. C. Bremer, V. Ntziachristos, and R. Weissleder, “Optical-based molecular imaging: contrast agents and potential medical applications,” Eur. Radiol. 13, 231-243 (2003). [PubMed]
  21. T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545-580 (2003). [CrossRef] [PubMed]
  22. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Imaging 8, 1-33 (2006). [CrossRef]
  23. R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology (Oak Brook, Ill.) 219, 316-336 (2001).
  24. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55-64 (1997). [CrossRef] [PubMed]
  25. X. Li, B. Chance, and A. G. Yodh, “Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption,” Appl. Opt. 37, 6833-6844 (1998). [CrossRef]
  26. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619-9624 (2002). [CrossRef] [PubMed]
  27. D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia 2, 388-417 (2000). [CrossRef]
  28. H. B. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337-5343 (1998). [CrossRef]
  29. A. B. Milstein, O. Seungseok, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081-3094 (2003). [CrossRef] [PubMed]
  30. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260-2272 (1997). [CrossRef] [PubMed]
  31. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066-4082 (2007). [CrossRef] [PubMed]
  32. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. doi: 10.1002/cnm, in press.
  33. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339-2341 (2003). [CrossRef] [PubMed]
  34. A. Li, Q. Zhang, J. Culver, E. Miller, and D. Boas, “Reconstructing chromophore concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256-258 (2004). [CrossRef] [PubMed]
  35. S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 4, 513-526 (2005). [PubMed]
  36. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195-202 (2006). [CrossRef] [PubMed]
  37. S. C. Davis, B. W. Pogue, S. Srinivasan, H. Dehghani, and K. D. Paulsen, “Development of spectrally-constrained diffuse optical tomography for imaging exogenous contrast agents,” in Biomedical Optics, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper SH36. [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited