OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain

Theodore J. Huppert, Solomon G. Diamond, Maria A. Franceschini, and David A. Boas  »View Author Affiliations


Applied Optics, Vol. 48, Issue 10, pp. D280-D298 (2009)
http://dx.doi.org/10.1364/AO.48.00D280


View Full Text Article

Enhanced HTML    Acrobat PDF (1267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Near-infrared spectroscopy (NIRS) is a noninvasive neuroimaging tool for studying evoked hemodynamic changes within the brain. By this technique, changes in the optical absorption of light are recorded over time and are used to estimate the functionally evoked changes in cerebral oxyhemoglobin and deoxyhemoglobin concentrations that result from local cerebral vascular and oxygen metabolic effects during brain activity. Over the past three decades this technology has continued to grow, and today NIRS studies have found many niche applications in the fields of psychology, physiology, and cerebral pathology. The growing popularity of this technique is in part associated with a lower cost and increased portability of NIRS equipment when compared with other imaging modalities, such as functional magnetic resonance imaging and positron emission tomography. With this increasing number of applications, new techniques for the processing, analysis, and interpretation of NIRS data are continually being developed. We review some of the time-series and functional analysis techniques that are currently used in NIRS studies, we describe the practical implementation of various signal processing techniques for removing physiological, instrumental, and motion-artifact noise from optical data, and we discuss the unique aspects of NIRS analysis in comparison with other brain imaging modalities. These methods are described within the context of the MATLAB-based graphical user interface program, HomER, which we have developed and distributed to facilitate the processing of optical functional brain data.

© 2009 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(300.0300) Spectroscopy : Spectroscopy
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

History
Original Manuscript: September 2, 2008
Revised Manuscript: January 19, 2009
Manuscript Accepted: February 10, 2009
Published: March 26, 2009

Virtual Issues
(2009) Advances in Optics and Photonics
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Theodore J. Huppert, Solomon G. Diamond, Maria A. Franceschini, and David A. Boas, "HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain," Appl. Opt. 48, D280-D298 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-10-D280


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435-442 (1997). [CrossRef] [PubMed]
  2. A. Yodh and D. Boas, eds., Functional Imaging with Diffusing Light (CRC Press, 2003).
  3. D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23 (Suppl. 1), S275-S288 (2004). [CrossRef] [PubMed]
  4. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  5. E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10, 011008 (2005). [CrossRef]
  6. “PMI Lab--HomER,”http://www.nmr.mgh.harvard.edu/PMI/resources/homer/home.htm.
  7. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264-1267 (1977). [CrossRef] [PubMed]
  8. J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, and E. O. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet 2, 1063-1066 (1986) [online ed.Lancet 328, 1063-1066 (2003). [CrossRef] [PubMed]
  9. B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, and M. Young, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971-4975 (1988). [CrossRef] [PubMed]
  10. T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” NeuroImage 29, 368-382 (2006). [CrossRef]
  11. T. Huppert, M. Franceschini, and D. Boas, “Non-invasive imaging of cerebral activation with diffuse optical tomography,” in In Vivo Optical Imaging of Brain Function, R. Frostig, ed., 2nd ed. (CRC Press, 2009). [CrossRef]
  12. Y. Fukui, Y. Ajichi, and E. Okada, “Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models,” Appl. Opt. 42, 2881-2887 (2003). [CrossRef] [PubMed]
  13. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915-2922 (2003). [CrossRef] [PubMed]
  14. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906-2914 (2003). [CrossRef] [PubMed]
  15. M. Cope, D. T. Delpy, E. O. Reynolds, S. Wray, J. Wyatt, and P. van der Zee, “Methods of quantitating cerebral near infrared spectroscopy data,” Adv. Exp. Med. Biol. 222, 183-189 (1988). [PubMed]
  16. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159-170 (2002). [PubMed]
  17. T. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “A quantitative spatial comparison of diffuse optical imaging with BOLD- and ASL-based fMRI,” J. Biomed. Opt. 11, 064018 (2006). [CrossRef]
  18. H. R. Heekeren, H. Obrig, R. Wenzel, K. Eberle, J. Ruben, K. Villringer, R. Kurth, and A. Villringer, “Cerebral haemoglobin oxygenation during sustained visual stimulation--a near-infrared spectroscopy study,” Philos. Trans. R. Soc. London Ser. B 352, 743-750 (1997). [CrossRef]
  19. J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy,” Proc. R. Soc. London Ser. B 261, 351-356 (1995). [CrossRef]
  20. J. Ruben, R. Wenzel, H. Obrig, K. Villringer, J. Bernarding, C. Hirth, H. Heekeren, U. Dirnagl, and A. Villringer, “Haemoglobin oxygenation changes during visual stimulation in the occipital cortex,” Adv. Exp. Med. Biol. 428, 181-187 (1997). [CrossRef] [PubMed]
  21. K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y. P. Wang, “Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy,” Early Hum. Dev. 55, 229-236 (1999). [CrossRef] [PubMed]
  22. S. Chen, K. Sakatani, W. Lichty, P. Ning, S. Zhao, and H. Zuo, “Auditory-evoked cerebral oxygenation changes in hypoxic-ischemic encephalopathy of newborn infants monitored by near infrared spectroscopy,” Early Hum. Dev. 67, 113-121(2002). [CrossRef] [PubMed]
  23. P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, “Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates,” Pediatr. Res. 49, 213-219 (2001). [CrossRef] [PubMed]
  24. M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40, 548-560 (2003). [CrossRef] [PubMed]
  25. H. Obrig, T. Wolf, C. Doge, J. J. Hulsing, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes during motor and somatosensory stimulation in humans, as measured by near-infrared spectroscopy,” Adv. Exp. Med. Biol. 388, 219-224 (1996). [CrossRef] [PubMed]
  26. H. Obrig, C. Hirth, J. G. Junge-Hulsing, C. Doge, T. Wolf, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes in response to motor stimulation,” J. Appl. Physiol. 81, 1174-1183 (1996). [PubMed]
  27. W. N. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari, “Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot,” Exp. Brain. Res. 129, 457-461 (1999). [CrossRef] [PubMed]
  28. C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Muhlnickel, H. Flor, U. Dirnagl, and A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” NeuroReport 7, 1977-1981(1996). [CrossRef] [PubMed]
  29. A. Kleinschmidt, H. Obrig, M. Requardt, K. D. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm, “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy,” J. Cereb. Blood Flow Metab. 16, 817-826 (1996). [CrossRef] [PubMed]
  30. M. Kameyama, M. Fukuda, Y. Yamagishi, T. Sato, T. Uehara, M. Ito, T. Suto, and M. Mikuni, “Frontal lobe function in bipolar disorder: a multichannel near-infrared spectroscopy study,” NeuroImage 29, 172-184 (2006). [CrossRef]
  31. S. Nagamitsu, M. Nagano, Y. Yamashita, S. Takashima, and T. Matsuishi, “Prefrontal cerebral blood volume patterns while playing video games-a near-infrared spectroscopy study,” Brain Dev. 28, 315-321 (2006). [CrossRef] [PubMed]
  32. M. Okamoto, M. Matsunami, H. Dan, T. Kohata, K. Kohyama, and I. Dan, “Prefrontal activity during taste encoding: an fNIRS study,” NeuroImage 31, 796-806 (2006). [CrossRef] [PubMed]
  33. S. Sumitani, T. Tanaka, S. Tayoshi, K. Ota, N. Kameoka, M. Morimune, S. Shibuya-Tayoshi, S. Kinouchi, S. Ueno, and T. Ohmori, “Hemodynamic changes in the prefrontal cortex during mental works as measured by multi channel near-infrared spectroscopy (NIRS),” J. Med. Invest. 52(Suppl.), 302-303 (2005). [CrossRef] [PubMed]
  34. H. Sato, T. Takeuchi, and K. L. Sakai, “Temporal cortex activation during speech recognition: an optical topography study,” Cognition 73, B55-66 (1999). [CrossRef] [PubMed]
  35. P. D. Adelson, E. Nemoto, M. Scheuer, M. Painter, J. Morgan, and H. Yonas, “Noninvasive continuous monitoring of cerebral oxygenation periictally using near-infrared spectroscopy: a preliminary report,” Epilepsia (1909-1915, 1937-1950, 1952-1955, 1959-) 40, 1484-1489 (1999).
  36. D. K. Sokol, O. N. Markand, E. C. Daly, T. G. Luerssen, and M. D. Malkoff, “Near infrared spectroscopy (NIRS) distinguishes seizure types,” Seizure : the Journal of the British Epilepsy Association 9, 323-327 (2000). [CrossRef]
  37. B. J. Steinhoff, G. Herrendorf, and C. Kurth, “Ictal near infrared spectroscopy in temporal lobe epilepsy: a pilot study,” Seizure: Eur. J. Epilepsy 5, 97-101 (1996).
  38. E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt. 5, 287-290 (2000). [CrossRef] [PubMed]
  39. K. Buchheim, H. Obrig, W. v. Pannwitz, A. Muller, H. Heekeren, A. Villringer, and H. Meierkord, “Decrease in haemoglobin oxygenation during absence seizures in adult humans,” Neurosci. Lett. Suppl. 354, 119-122 (2004). [CrossRef]
  40. E. Watanabe, Y. Nagahori, and Y. Mayanagi, “Focus diagnosis of epilepsy using near-infrared spectroscopy,” Epilepsia (1909-1915, 1937-1950, 1952-1955, 1959-) 43(Suppl. 9), 50-55 (2002).
  41. A. J. Fallgatter, M. Roesler, L. Sitzmann, A. Heidrich, T. J. Mueller, and W. K. Strik, “Loss of functional hemispheric asymmetry in Alzheimer's dementia assessed with near-infrared spectroscopy,” Brain Res. Cognit. Brain Res. 6, 67-72 (1997). [CrossRef]
  42. E. B. Hanlon, I. Itzkan, R. R. Dasari, M. S. Feld, R. J. Ferrante, A. C. McKee, D. Lathi, and N. W. Kowall, “Near-infrared fluorescence spectroscopy detects Alzheimer's disease in vitro,” Photochem. Photobiol. 70, 236-242 (1999). [PubMed]
  43. C. Hock, K. Villringer, F. Muller-Spahn, M. Hofmann, S. Schuh-Hofer, H. Heekeren, R. Wenzel, U. Dirnagl, and A. Villringer, “Near infrared spectroscopy in the diagnosis of Alzheimer's disease,” Ann. N.Y. Acad. Sci. 777, 22-29 (1996). [CrossRef] [PubMed]
  44. P. Rolfe, Y. A. Wickramasinghe, M. S. Thorniley, F. Faris, R. Houston, Z. Kai, K. Yamakoshi, S. O'Brien, M. Doyle, K. Palmer, and S. Spencer, “Fetal and neonatal cerebral oxygen monitoring with NIRS: theory and practice,” Early Hum. Dev. 29, 269-273 (1992). [CrossRef] [PubMed]
  45. A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” NeuroImage 24, 426-435 (2005). [CrossRef] [PubMed]
  46. K. Orihashi, T. Sueda, K. Okada, and K. Imai, “Near-infrared spectroscopy for monitoring cerebral ischemia during selective cerebral perfusion,” Eur. J. Cardiothorac Surg. 26, 907-911 (2004). [CrossRef] [PubMed]
  47. C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75, 38-42 (2004). [PubMed]
  48. J. R. Thiagarajah, M. C. Papadopoulos, and A. S. Verkman, “Noninvasive early detection of brain edema in mice by near-infrared light scattering,” J. Neorosci. Res. 80, 293-299 (2005). [CrossRef]
  49. W. G. Chen, P. C. Li, Q. M. Luo, S. Q. Zeng, and B. Hu, “Hemodynamic assessment of ischemic stroke with near-infrared spectroscopy,” Space Med. Med. Eng. (Beijing) 13, 84-89(2000).
  50. E. M. Nemoto, H. Yonas, and A. Kassam, “Clinical experience with cerebral oximetry in stroke and cardiac arrest,” Crit. Care Med. 28, 1052-1054 (2000). [CrossRef] [PubMed]
  51. H. Saitou, H. Yanagi, S. Hara, S. Tsuchiya, and S. Tomura, “Cerebral blood volume and oxygenation among poststroke hemiplegic patients: effects of 13 rehabilitation tasks measured by near-infrared spectroscopy,” Arch. Phys. Med. Rehabil. 81, 1348-1356 (2000). [CrossRef] [PubMed]
  52. F. Vernieri, N. Rosato, F. Pauri, F. Tibuzzi, F. Passarelli, and P. M. Rossini, “Near infrared spectroscopy and transcranial Doppler in monohemispheric stroke,” Eur. Neurol. 41, 159-162 (1999). [CrossRef] [PubMed]
  53. G. W. Eschweiler, C. Wegerer, W. Schlotter, C. Spandl, A. Stevens, M. Bartels, and G. Buchkremer, “Left prefrontal activation predicts therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) in major depression,” Psychiatry Res. 99, 161-172 (2000). [CrossRef] [PubMed]
  54. K. Matsuo, T. Kato, M. Fukuda, and N. Kato, “Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy,” J. Neuropsychiatry Clin. Neurosci. 12, 465-471 (2000). [CrossRef] [PubMed]
  55. F. Okada, N. Takahashi, and Y. Tokumitsu, “Dominance of the 'nondominant' hemisphere in depression,” J. Affect Disord. 37, 13-21 (1996). [CrossRef] [PubMed]
  56. K. Matsuo, N. Kato, and T. Kato, “Decreased cerebral haemodynamic response to cognitive and physiological tasks in mood disorders as shown by near-infrared spectroscopy,” Psychol. Med. 32, 1029-1037 (2002). [CrossRef] [PubMed]
  57. T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry 55, 501-511 (2004). [CrossRef] [PubMed]
  58. A. J. Fallgatter, and W. K. Strik, “Reduced frontal functional asymmetry in schizophrenia during a cued continuous performance test assessed with near-infrared spectroscopy,” Schizophr. Bull. 26, 913-919 (2000). [PubMed]
  59. F. Okada, Y. Tokumitsu, Y. Hoshi, and M. Tamura, “Impaired interhemispheric integration in brain oxygenation and hemodynamics in schizophrenia,” Eur. Arch. Psychiatry Clin. Neurosci. 244, 17-25 (1994). [CrossRef] [PubMed]
  60. Y. Kubota, M. Toichi, M. Shimizu, R. A. Mason, C. M. Coconcea, R. L. Findling, K. Yamamoto, and J. R. Calabrese, “Prefrontal activation during verbal fluency tests in schizophrenia--a near-infrared spectroscopy (NIRS) study,” Schizophr. Res. 77, 65-73 (2005). [CrossRef] [PubMed]
  61. T. Shinba, M. Nagano, N. Kariya, K. Ogawa, T. Shinozaki, S. Shimosato, and Y. Hoshi, “Near-infrared spectroscopy analysis of frontal lobe dysfunction in schizophrenia,” Biol. Psychiatry 55, 154-164 (2004). [CrossRef] [PubMed]
  62. A. Watanabe and T. Kato, “Cerebrovascular response to cognitive tasks in patients with schizophrenia measured by near-infrared spectroscopy,” Schizophr. Bull. 30, 435-444 (2004). [PubMed]
  63. C. E. Elwell, J. R. Henty, T. S. Leung, T. Austin, J. H. Meek, D. T. Delpy, and J. S. Wyatt, “Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy,” Adv. Exp. Med. Biol. 566, 263-268 (2005). [CrossRef]
  64. T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Using near-infrared spectroscopy to assess neural activation during object processing in infants,” J. Biomed. Opt. 10, 11010 (2005). [CrossRef] [PubMed]
  65. E. R. Sowell, P. M. Thompson, C. M. Leonard, S. E. Welcome, E. Kan, and A. W. Toga, “Longitudinal mapping of cortical thickness and brain growth in normal children,” J. Neurosci. 24, 8223-8231 (2004). [CrossRef] [PubMed]
  66. S. Perrey, “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45, 289-299 (2008). [CrossRef] [PubMed]
  67. K. Ide and N. H. Secher, “Cerebral blood flow and metabolism during exercise,” Prog. Neurobiol. (Oxford) 61, 397-414(2000). [CrossRef]
  68. D. J. Mehagnoul-Schipper, W. N. Colier, and R. W. Jansen, “Reproducibility of orthostatic changes in cerebral oxygenation in healthy subjects aged 70 years or older,” Clin. Physiol. 21, 77-84 (2001). [CrossRef] [PubMed]
  69. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11, 054007 (2006). [CrossRef] [PubMed]
  70. Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10, 011014 (2005). [CrossRef]
  71. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10, 011013 (2005). [CrossRef]
  72. E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. London Ser. B 352, 727-735 (1997). [CrossRef]
  73. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  74. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859-1876 (1993). [CrossRef] [PubMed]
  75. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162-1168(1989). [CrossRef] [PubMed]
  76. S. T. Flock, B. C. Wilson, and M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues--II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169-1173 (1989). [CrossRef] [PubMed]
  77. A. Custo, W. M. Wells III, A. H. Barnett, E. M. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Appl. Opt. 45, 4747-4755 (2006). [CrossRef] [PubMed]
  78. R. L. Barbour, H. L. Graber, J. Chang, S.-L. S. Barbour, P. C. Koo, and R. Aronson, “MRI-guided optical tomography: prospectives and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63-77 (1995). [CrossRef]
  79. X. Zhang, V. Y. Toronov, and A. G. Webb, “Spatial and temporal hemodynamic study of human primary visual cortex using simultaneous functional MRI and diffuse optical tomography,” in 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005 (IEEE, 2005), pp. 727-730. [PubMed]
  80. J. Chang, H. L. Graber, P. C. Koo, R. Aronson, S. L. Barbour, and R. L. Barbour, “Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources,” IEEE Trans. Med. Imaging 16, 68-77 (1997). [CrossRef] [PubMed]
  81. T. J. Huppert, S. G. Diamond, and D. A. Boas, “Direct estimation of evoked hemoglobin changes by multimodality fusion imaging,” J. Biomed. Opt. 13, 054031 (2008). [CrossRef] [PubMed]
  82. R. B. Buxton, K. Uludag, D. J. Dubowitz, and T. T. Liu, “Modeling the hemodynamic response to brain activation,” NeuroImage 23(Suppl. 1), S220-S233 (2004). [CrossRef] [PubMed]
  83. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433-1442 (1988). [CrossRef] [PubMed]
  84. A. Sassaroli and S. Fantini, “Comment on the modified Beer-Lambert law for scattering media,” Phys. Med. Biol. 49, N255-N257 (2004). [CrossRef] [PubMed]
  85. L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51, N91-N98 (2006). [CrossRef] [PubMed]
  86. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” NeuroImage 18, 865-879 (2003). [CrossRef] [PubMed]
  87. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085-2098 (2007). [CrossRef] [PubMed]
  88. Y. Hoshi, “Functional near-infrared optical imaging: utility and limitations in human brain mapping,” Psychophysiology 40, 511-520 (2003). [CrossRef] [PubMed]
  89. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” NeuroImage 13, 76-90 (2001). [CrossRef] [PubMed]
  90. M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol. 43, 1771-1782 (1998). [CrossRef] [PubMed]
  91. D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt. 44, 1957-1968 (2005). [CrossRef] [PubMed]
  92. N. Okui and E. Okada, “Wavelength dependence of crosstalk in dual-wavelength measurement of oxy- and deoxy-hemoglobin,” J. Biomed. Opt. 10, 11015 (2005). [CrossRef] [PubMed]
  93. H. Sato, M. Kiguchi, F. Kawaguchi, and A. Maki, “Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy,” NeuroImage 21, 1554-1562 (2004). [CrossRef] [PubMed]
  94. J. Cohen-Adad, S. Chapuisat, J. Doyon, S. Rossignol, J. M. Lina, H. Benali, and F. Lesage, “Activation detection in diffuse optical imaging by means of the general linear model,” Med. Image Anal. 11, 616-629 (2007). [CrossRef] [PubMed]
  95. K. J. Friston., Statistical Parametric Mapping : the Analysis of Functional Brain Images (Elsevier/Academic, 2007).
  96. I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” NeuroImage 14, 1186-1192 (2001). [CrossRef] [PubMed]
  97. D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Design and validation of a time division multiplexed continuous wave diffuse optical tomography (DOT) system optimized for brain function imaging,” Appl. Opt. 45, 8142-8151 (2006). [CrossRef] [PubMed]
  98. D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29, 1506-1508 (2004). [CrossRef] [PubMed]
  99. A. M. Dale, “Optimal experimental design for event-related fMRI,” Hum. Brain Mapp. 8, 109-114 (1999). [CrossRef] [PubMed]
  100. O. Josephs and R. N. Henson, “Event-related functional magnetic resonance imaging: modelling, inference and optimization,” Philos. Trans. R. Soc. London Ser. B 354, 1215-1228 (1999). [CrossRef]
  101. K. J. Friston, “Experimental design and statistical issues,” in Brain Mapping: The Disorders, J. C.Mazziotta, A. W.Toga, and R. S. J.Frackowiak, eds. (Academic, 2000), pp. 33-58. [CrossRef]
  102. T. D. Wager and T. E. Nichols, “Optimization of experimental design in fMRI: a general framework using a genetic algorithm,” NeuroImage 18, 293-309 (2003). [CrossRef] [PubMed]
  103. A. F. Cannestra, N. Pouratian, M. H. Shomer, and A. W. Toga, “Refractory periods observed by intrinsic signal and fluorescent dye imaging,” J. Neurophysiol. 80, 1522-1532(1998). [PubMed]
  104. H. Sato, M. Kiguchi, A. Maki, Y. Fuchino, A. Obata, T. Yoro, and H. Koizumi, “Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months,” J. Biomed. Opt. 11, 014021 (2006). [CrossRef] [PubMed]
  105. H. Sato, Y. Fuchino, M. Kiguchi, T. Katura, A. Maki, T. Yoro, and H. Koizumi, “Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation,” J. Biomed. Opt. 10, 44001 (2005). [CrossRef] [PubMed]
  106. H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhaupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” NeuroImage 12, 623-639 (2000). [CrossRef] [PubMed]
  107. V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27, 801-815 (2000). [CrossRef] [PubMed]
  108. S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge, and D. A. Boas, “Physiological system identification with the Kalman filter in diffuse optical tomography,” in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2005, Vol. 3750 of Lecture Notes in Computer Science (Springer, 2005), pp. 649-656. [CrossRef]
  109. S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge, and D. A. Boas, “Dynamic physiological modeling for functional diffuse optical tomography,” NeuroImage 30, 88-101 (2006). [CrossRef]
  110. K. von Siebenthal, J. Beran, M. Wolf, M. Keel, V. Dietz, S. Kundu, and H. U. Bucher, “Cyclical fluctuations in blood pressure, heart rate and cerebral blood volume in preterm infants,” Brain Dev. 21, 529-534 (1999). [CrossRef] [PubMed]
  111. D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Analysis (Wiley-Interscience, 2006).
  112. H. Sato, N. Tanaka, M. Uchida, Y. Hirabayashi, M. Kanai, T. Ashida, I. Konishi, and A. Maki, “Wavelet analysis for detecting body-movement artifacts in optical topography signals,” NeuroImage 33, 580-587 (2006). [CrossRef] [PubMed]
  113. M. Izzetoglu, A. Devaraj, S. Bunce, and B. Onaral, “Motion artifact cancellation in NIR spectroscopy using Wiener filtering,” IEEE Trans. Biomed. Eng. 52, 934-938(2005). [CrossRef] [PubMed]
  114. G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679-693 (2002). [CrossRef] [PubMed]
  115. C. Long, E. N. Brown, D. Manoach, and V. Solo, “Spatiotemporal wavelet analysis for functional MRI,” NeuroImage 23, 500-516 (2004). [CrossRef] [PubMed]
  116. Y. Shimizu, M. Barth, C. Windischberger, E. Moser, and S. Thurner, “Wavelet-based multifractal analysis of fMRI time series,” NeuroImage 22, 1195-1202 (2004). [CrossRef] [PubMed]
  117. S. Baillet, L. Garnero, G. Marin, and J. P. Hugonin, “Combined MEG and EEG source imaging by minimization of mutual information,” IEEE Trans. Biomed. Eng. 46, 522-534 (1999). [CrossRef] [PubMed]
  118. S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, and S. R. Arridge, “Time-series estimation of biological factors in optical diffusion tomography,” Phys. Med. Biol. 48, 1491-1504 (2003). [CrossRef] [PubMed]
  119. H. Luo and S. Puthusserypady, “fMRI data analysis with nonstationary noise models: a Bayesian approach,” IEEE Trans. Biomed. Eng. 54, 1621-1630 (2007). [CrossRef] [PubMed]
  120. G. H. Glover, T. Q. Li, and D. Ress, “Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR,” Magn. Reson. Med. 44, 162-167(2000). [CrossRef] [PubMed]
  121. R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” NeuroImage 31, 1536-1548 (2006). [CrossRef] [PubMed]
  122. J. L. Devore, “Simple linear regression and correlation,” in Probability and Statistics for Engineering and the Sciences (Wadsworth, 1995), pp. 474-522.
  123. H. Chen, D. Yao, and Z. Liu, “A comparison of gamma and Gaussian dynamic convolution models of the fMRI BOLD response,” Magn. Reson. Imaging 23, 83-88 (2005). [CrossRef] [PubMed]
  124. Y. Zhang, D. H. Brooks, and D. A. Boas, “A haemodynamic response function model in spatio-temporal diffuse optical tomography,” Phys. Med. Biol. 50, 4625-4644 (2005). [CrossRef] [PubMed]
  125. E. R. Cohen, K. Ugurbil, and S. G. Kim, “Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response,” J. Cereb. Blood Flow Metab. 22, 1042-1053 (2002). [CrossRef] [PubMed]
  126. G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007). [CrossRef] [PubMed]
  127. T. Deneux and O. Faugeras, “Using nonlinear models in fMRI data analysis: model selection and activation detection,” NeuroImage 32, 1669-1689 (2006). [CrossRef] [PubMed]
  128. J. J. Riera, J. Watanabe, I. Kazuki, M. Naoki, E. Aubert, T. Ozaki, and R. Kawashima, “A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals,” NeuroImage 21, 547-567 (2004). [CrossRef] [PubMed]
  129. K. J. Friston, A. Mechelli, R. Turner, and C. J. Price, “Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics,” NeuroImage 12, 466-477(2000). [PubMed]
  130. T. J. Huppert, M. S. Allen, S. G. Diamond, and D. A. Boas, “Estimating cerebral oxygen metabolism from fMRI with a dynamic multicompartment Windkessel model,” Hum. Brain Mapp. (2008). [PubMed]
  131. G. H. Glover, “Deconvolution of impulse response in event-related BOLD fMRI,” NeuroImage 9, 416-429 (1999). doi: 10.1002/hbm.20628 [CrossRef] [PubMed]
  132. M. M. Plichta, S. Heinzel, A. C. Ehlis, P. Pauli, and A. J. Fallgatter, “Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: a parametric validation study,” NeuroImage 35, 625-634 (2007). [CrossRef] [PubMed]
  133. M. L. Schroeter, M. M. Bucheler, K. Muller, K. Uludag, H. Obrig, G. Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon, “Towards a standard analysis for functional near-infrared imaging,” NeuroImage 21, 283-290 (2004). [CrossRef] [PubMed]
  134. R. D. Hoge, M. A. Franceschini, R. J. Covolan, T. Huppert, J. B. Mandeville, and D. A. Boas, “Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI,” NeuroImage 25, 701-707 (2005). [CrossRef] [PubMed]
  135. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879-896 (2001). [CrossRef] [PubMed]
  136. M. Wolf, M. A. Franceschini, L. A. Paunescu, V. Toronov, A. Michalos, U. Wolf, E. Gratton, and S. Fantini, “Absolute frequency-domain pulse oximetry of the brain: methodology and measurements,” Adv. Exp. Med. Biol. 530, 61-73 (2003). [CrossRef] [PubMed]
  137. B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30, 1968-1970 (2005). [CrossRef] [PubMed]
  138. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256-258 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited