OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Following dimethyl sulfoxide skin optical clearing dynamics with quantitative nonlinear multimodal microscopy

Maxwell Zimmerley, R. Anthony McClure, Bernard Choi, and Eric Olaf Potma  »View Author Affiliations


Applied Optics, Vol. 48, Issue 10, pp. D79-D87 (2009)
http://dx.doi.org/10.1364/AO.48.000D79


View Full Text Article

Enhanced HTML    Acrobat PDF (735 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Second-harmonic generation (SHG) imaging is combined with coherent anti-Stokes Raman scattering (CARS) microscopy to follow the process of optical clearing in human skin ex vivo using dimethyl sulfoxide (DMSO) as the optical clearing agent. SHG imaging revealed that DMSO introduces morphological changes to the collagen I matrix. By carefully measuring the dynamic tissue attenuation of the coherent nonlinear signal, using CARS reference signals during the clearing process, it is found that DMSO reduces the overall SHG response from dermal collagen. Evidence is provided for a role of DMSO in compromising the structure of collagen fibers, associated with a reduction of the tissue’s scattering properties.

© 2009 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.4315) Microscopy : Nonlinear microscopy

History
Original Manuscript: September 5, 2008
Revised Manuscript: December 11, 2008
Manuscript Accepted: December 19, 2008
Published: January 21, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Maxwell Zimmerley, R. Anthony McClure, Bernard Choi, and Eric Olaf Potma, "Following dimethyl sulfoxide skin optical clearing dynamics with quantitative nonlinear multimodal microscopy," Appl. Opt. 48, D79-D87 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-10-D79


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Tuchin, Tissue Optics (SPIE Press, 2007). [CrossRef]
  2. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401-417 (1997). [CrossRef]
  3. G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24, 133-141 (1999). [CrossRef] [PubMed]
  4. V. V. Tuchin, “Optical clearing of tissues and blood using the immersion method,” J. Phys. D 38, 2497-2518 (2005). [CrossRef]
  5. Y. He and R. K. Wang, “Dynamic optical clearing effect of tissue impregnated with hyperosmotic agents and studied with optical coherence tomography,” J. Biomed. Opt. 9, 200-206 (2004). [CrossRef] [PubMed]
  6. R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18, 948-953 (2001). [CrossRef]
  7. R. Cicchi and F. S. Pavone, “Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents,” Opt. Express 13, 2337-2344 (2005). [CrossRef] [PubMed]
  8. G. Vargas, K. F. Chan, S. L. Thomsen, and A. J. Welch, “Use of osmotically active agents to alter optical properties of tissue: effects on the detected fluorescence signal measured through skin,” Lasers Surg. Med. 29, 213-220 (2001). [CrossRef] [PubMed]
  9. S. Plotnikov, V. Junaja, A. B. Isaacson, W. A. Mohler, and P. J. Campagnola, “Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle,” Biophys. J. 90, 328-339 (2006). [CrossRef]
  10. R. LaComb, O. Nadiarnykh, S. Carey, and P. J. Campagnola, “Quantitative second harmonic generation imaging and modeling of the optical clearing mechanism in striated muscle and tendon,” J. Biomed. Opt. 13, 021109 (2008). [CrossRef] [PubMed]
  11. X. Xu and R. K. Wang, “The role of water desorption on optical clearing of biotissue: Studied with near infrared reflectance spectroscopy,” Med. Phys. 30, 1246-1253 (2003). [CrossRef] [PubMed]
  12. B. Choi, L. Tsu, E. Chen, T. S. Ishak, S. M. Iskandar, S. Chess, and J. S. Nelson, “Determination of chemical agent optical clearing potential using in vitro human skin,” Lasers Surg. Med. 36, 72-75 (2005). [CrossRef] [PubMed]
  13. A. T. Yeh, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121, 1332-1335 (2003). [CrossRef] [PubMed]
  14. J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Collagen solubility correlates with skin optical clearing,” J Biomed. Opt. 11, 040501 (2006). [CrossRef] [PubMed]
  15. G. F. Odland, “Structure of the Skin,” in Physiology, Biochemistry and Molecular Biology of the Skin (Oxford University Press, 1991), pp. 3-62.
  16. L. Leonardi, A. Ruggeri, N. Roveri, A. Bigi, and E. Reale, “Light microscopy, electron microscopy, and x-ray diffraction analysis of glycerinated collagen fibers,” J. Ultrastruct. Res. 85, 228-237 (1983). [CrossRef] [PubMed]
  17. F. Légaré, C. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J. 93, 1312-1320(2007). [CrossRef] [PubMed]
  18. S. W. Chu, S. P. Tsai, M. C. Chan, C. K. Sun, I. C. Hsiao, C. H. Lin, Y. C. Chen, and B. L. Lin, “Thickness dependence of optical second harmonic generation in collagen fibrils,” Opt. Express 15, 12005-12010 (2007). [CrossRef] [PubMed]
  19. J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363-1375(2002). [CrossRef]
  20. R. K. Wang, X., Y. He, and J. B. Elder, “Investigation of optical clearing of gastric tissue immersed with hyperosmotic agents,” IEEE J. Sel. Top. Quantum Electron. 9, 234-242 (2003). [CrossRef]
  21. F. Cansell, D. Fabre, and J. P. Petitet, “Raman spectroscopy of DMSO and DMSO-H2O mixtures (32 mol % of DMSO) up to 20 GPa,” Physica B 182, 195-200 (1992). [CrossRef]
  22. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côte, C. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad Sci. U.S.A. 102, 16807-16812 (2005). [CrossRef] [PubMed]
  23. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377-1386 (2005). [CrossRef]
  24. R. LaComb, O. Nadiarnykh, S. S. Townsend, and P. J. Campagnola, “Phase matching considerations in second-harmonic generation from tissues: effects on emission directionality, conversion efficiency, and observed morphology,” Opt. Commun. 281, 1823-1832 (2008). [CrossRef]
  25. O. Nadiarnykh, R. B. LaComb, and P. J. Campagnola, “Coherent and incoherent SHG in fibrillar cellulose matrices,” Opt. Express 15, 3348-3360 (2007). [CrossRef] [PubMed]
  26. R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: experiment and simulation,” Biophys. J. 94, 4504-4515 (2008). [CrossRef] [PubMed]
  27. A. M. Pena, T. Boulesteix, T. Dartigalongue, and M. C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens I and IV,” J. Am. Chem. Soc. 127, 10314-10322 (2005). [CrossRef] [PubMed]
  28. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100, 7075-7080 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited