OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr:forsterite and Ti:sapphire lasers

Takeshi Yasui, Yu Takahashi, Masahiro Ito, Shuichiro Fukushima, and Tsutomu Araki  »View Author Affiliations

Applied Optics, Vol. 48, Issue 10, pp. D88-D95 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1143 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Second-harmonic-generation (SHG) microscopy is an interesting new tool for observing dermal collagen fiber in skin. However, conventional SHG microscopy using a mode-locked Ti:sapphire laser suffers from low penetration depth and a slow image acquisition rate caused by scattering and absorption in tissue, making it difficult to use for in vivo applications on human skin. We develop an SHG microscope equipped with a mode-locked Cr:forsterite laser with a long wavelength and compare its imaging characteristics with that of a Ti:sapphire-laser-based SHG microscope for the measurement of dermal collagen fiber in animal and human skins. The results indicate the suitability of the Cr:forsterite laser-based SHG microscope for in vivo imaging of human skin.

© 2009 Optical Society of America

OCIS Codes
(170.1870) Medical optics and biotechnology : Dermatology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography
(190.4160) Nonlinear optics : Multiharmonic generation
(180.4315) Microscopy : Nonlinear microscopy

Original Manuscript: September 2, 2008
Revised Manuscript: December 22, 2008
Manuscript Accepted: December 26, 2008
Published: January 26, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Takeshi Yasui, Yu Takahashi, Masahiro Ito, Shuichiro Fukushima, and Tsutomu Araki, "Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr:forsterite and Ti:sapphire lasers," Appl. Opt. 48, D88-D95 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Roth and I. Freund, “Optical second-harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271-1290 (1981). [CrossRef] [PubMed]
  2. G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53-62 (2003). [CrossRef]
  3. K. König and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8, 432-439(2003). [CrossRef] [PubMed]
  4. J. A. Palero, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, “In vivo nonlinear spectral imaging in mouse skin,” Opt. Express 14, 4395-4402 (2006). [CrossRef] [PubMed]
  5. T. Yasui, Y. Tohno, and T. Araki, “Determination of collagen fiber orientation in human tissue by polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861-2867 (2004). [CrossRef] [PubMed]
  6. T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259-264 (2004). [CrossRef] [PubMed]
  7. T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light,” Opt. Quantum Electron. 37, 1397-1408 (2005). [CrossRef]
  8. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39, 1194-1201 (2000). [CrossRef]
  9. C.-Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8, 450-459 (2003). [CrossRef] [PubMed]
  10. U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88-97 (2001). [CrossRef]
  11. K. König, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two photon microscope,” Opt. Lett. 22, 135-136 (1997). [CrossRef] [PubMed]
  12. P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, “Highly efficient upconverters for multiphoton fluorescence microscopy,” J. Microsc. 189, 199-212 (1998). [CrossRef]
  13. R. R. Anderson and J. A. Parish, “The optics of human skin,” J. Invest. Dermatol. 77, 13-19 (1981). [CrossRef] [PubMed]
  14. S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, “In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093-3099 (2003). [CrossRef] [PubMed]
  15. S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, “In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy,” Opt. Express 14, 6178-6187 (2006). [CrossRef] [PubMed]
  16. S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Zhang, H.-L. Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13, 8231-8242 (2005). [CrossRef] [PubMed]
  17. S.-Y. Chen, C.-Y. S. Hsu, and C.-K. Sun, “Epi-third and second harmonic generation microscopic imaging of abnormal enamel,” Opt. Express 16, 11670-11679 (2008). [PubMed]
  18. I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: a microspectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron 34, 1251-1266 (2002). [CrossRef]
  19. T.-H. Tsai, S.-P. Tai, W.-J. Lee, H.-Y. Huang, Y.-H. Liao, and C.-K. Sun, “Optical signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy,” Opt. Express 14, 749-758 (2006). [CrossRef] [PubMed]
  20. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258-2260 (1995). [CrossRef] [PubMed]
  21. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002). [CrossRef] [PubMed]
  22. P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123-1130 (2003). [CrossRef] [PubMed]
  23. Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, “Second-harmonic optical coherence tomography,” Opt. Lett. 29, 1090-1092(2004). [CrossRef] [PubMed]
  24. J. Su, I. V. Tomov, Y. Jiang, and Z. Chen, “High-resolution frequency-domain second-harmonic optical coherence tomography,” Appl. Opt. 46, 1770-1775 (2007). [CrossRef] [PubMed]
  25. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22, 1323-1325 (1997). [CrossRef]
  26. F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, and R. Wepf, “Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800 nm,” J. Biomed. Opt. 13, 041320 (2008). [CrossRef] [PubMed]
  27. S.-Y. Chen and C.-K. Sun, “In vivo imaging of human skin using harmonic generation microscopy,” in Abstracts. Focus on Microscopy 2008 (2008), p. 59.
  28. L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, “Collagen loss in photoaged human skin is overestimated by histochemistry,” Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000). [CrossRef] [PubMed]
  29. S.-J. Lin, R.-Jr. Wu, H.-Y. Tan, W. Lo, W.-C. Lin, T.-H. Young, C.-J. Hsu, J.-S. Chen, S.-H. Jee, and C.-Y. Dong, “Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy,” Opt. Lett. 30, 2275-2277 (2005). [CrossRef] [PubMed]
  30. M. J. Koehler, K. König, P. Elsner, R. Bückle, and M. Kaatz, “In vivo assessment of human skin aging by multiphoton laser scanning tomography,” Opt. Lett. 31, 2879-2881(2006). [CrossRef] [PubMed]
  31. T. Yasui, Y. Takahashi, T. Araki, Y. Ogura, Y. Matsunaga, and T. Kuwahara, “Observation of photoaged, dermal collagen fiber using polarization-resolved second-harmonic-generation microscopy,” J. Invest. Dermatol. 128, S40 (2008).
  32. T. Yasui, Y. Takahashi, S. Fukushima, Y. Ogura, T. Yamashita, T. Kuwahara, T. Hirao, and T. Araki, “Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy,” Opt. Express 17, 912-923 (2009). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3788 KB)     
» Media 2: MOV (2540 KB)     
» Media 3: MOV (2991 KB)     
» Media 4: MOV (3245 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited