OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Concentration dependence of gold nanoshells on the enhancement of optical coherence tomography images: a quantitative study

James Chen Yong Kah, Tzu Hao Chow, Beng Koon Ng, Sirajudeen Gulam Razul, Malini Olivo, and Colin James Richard Sheppard  »View Author Affiliations

Applied Optics, Vol. 48, Issue 10, pp. D96-D108 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effective use of gold nanoshells as a contrast agent for optical coherence tomography (OCT) may be hampered by the delivery of a wrong dose to tissue that results in unwanted signal attenuation. In this study we examine how changes in μ s due to concentration variations affect the OCT image and then define a dosing range that would result in appropriate scattering coefficient, μ s , to maintain an acceptable signal attenuation level. Our results show that an increase in sample μ s not only enhances the OCT signal near the surface but also attenuates the signal deeper into the sample. We synthesized gold nanoshells with an 81 nm radius silica core and 23 nm shell thickness and found that a concentration range of 5.6 × 10 9 < c < 2.3 × 10 10 particles / ml provided adequate signal enhancement near the surface without severely compromising the imaging depth due to signal attenuation. We also demonstrate the extraction of μ s from the OCT signal to estimate the gold nanoshells’ concentration in vivo and verified that the estimated concentration of 6.2 × 10 9 particles / ml in a mouse tumor after intravenous delivery lies within this concentration range to effectively enhance the tumor image.

© 2009 Optical Society of America

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(160.4236) Materials : Nanomaterials

Original Manuscript: September 3, 2008
Revised Manuscript: December 28, 2008
Manuscript Accepted: January 2, 2009
Published: January 30, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

James Chen Yong Kah, Tzu Hao Chow, Beng Koon Ng, Sirajudeen Gulam Razul, Malini Olivo, and Colin James Richard Sheppard, "Concentration dependence of gold nanoshells on the enhancement of optical coherence tomography images: a quantitative study," Appl. Opt. 48, D96-D108 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996). [PubMed]
  3. A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Snopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, and O. Streltzova, “in vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Express 1, 432-440 (1997). [CrossRef] [PubMed]
  4. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “in vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  5. A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, and V. V. Tuchin, “The influence of glycerol on the transport of light in the skin,” Proc. SPIE 4623, 144-152 (2002). [CrossRef]
  6. R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointestinal tissue,” Lasers Surg. Med. 30, 201-208 (2002). [CrossRef] [PubMed]
  7. J. K. Barton, J. B. Hoying, and C. J. Sullivan, “Use of microbubbles as an optical coherence tomography contrast agent,” Acad. Radiol. 9, S52-S55 (2002). [CrossRef] [PubMed]
  8. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546-1548 (2003). [CrossRef] [PubMed]
  9. T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical coherence tomography with plasmon resonant nanorods of gold,” Opt. Lett. 32, 1438-1440 (2007). [CrossRef] [PubMed]
  10. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477(2005). [CrossRef] [PubMed]
  11. C. H. Loo, A. Lin, L. Hirsch, M. H. Lee, J. K. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Tech. Cancer Res. Treat. 3, 33-40 (2004).
  12. C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett. 30, 1012-1014 (2005). [CrossRef] [PubMed]
  13. E. V. Zagaynova, M. V. Shirmanova, A. G. Orlova, I. V. Balalaeva, M. Yu. Kirillin, V. A. Kamensky, M. L. Bugrova , and M. A. Sirotkina , “Gold nanoshells for OCT imaging contrast: From model to in vivo study,” Proc. SPIE 6865, 68650K (2008). [CrossRef]
  14. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824-1832 (1999). [CrossRef]
  15. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897-2899 (1999). [CrossRef]
  16. C. H. Loo, A. Lowery, N. J. Halas, J. L. West, and R. A. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709-711 (2005). [CrossRef] [PubMed]
  17. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Serchen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003). [CrossRef] [PubMed]
  18. J. K. Barton, N. J. Halas, J. L. West, and R. A. Drezek, “Nanoshells as an optical coherence tomography contrast agent,” Proc. SPIE 5316, 99-106 (2004). [CrossRef]
  19. A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11, 041121 (2006). [CrossRef] [PubMed]
  20. D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, J. Valnciunaite, J. Swartling, S. Andersson-Engels, and P. R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12, 249-259(2004). [CrossRef] [PubMed]
  21. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42, 3027-3037 (2003). [CrossRef] [PubMed]
  22. J. C. Y. Kah, N. Phonthammachai, R. C. Y. Wan, J. Song, T. White, S. Mhaisalkar, I. Ahmad, C. Sheppard, and M. Olivo, “Synthesis of gold nanoshells based on the deposition-precipitation process,” Gold Bull. 41, 23-36 (2008). [CrossRef]
  23. J. C. Y. Kah, Division of Bioengineering, National University of Singapore, Singapore is preparing a manuscript to be called “Backscattering response of gold nanoshells as an appropriate optical contrast parameter in reflectance-based imaging applications.”
  24. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242-1246 (1951). [CrossRef]
  25. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510-519 (1992). [CrossRef] [PubMed]
  26. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167-176 (2001). [CrossRef] [PubMed]
  27. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507-4514 (1991). [CrossRef] [PubMed]
  28. A. Oldenburg, M. Hansen, D. Zweifel, A. Wei, and S. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14, 6724-6738 (2006). [CrossRef] [PubMed]
  29. D. J. Faber, M. C. G. Aalders, and T. G. van Leeuwen, “Curve fitting for quantitative measurement of attenuation coefficients from OCT images,” Proc. SPIE 5690, 325-333 (2005). [CrossRef]
  30. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,” J. Opt. Soc. Am. A 17, 484-490 (2000). [CrossRef]
  31. A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J Biomed. Opt. 10, 064035 (2005). [CrossRef]
  32. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9, 227-233 (2003). [CrossRef]
  33. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992-994 (2001). [CrossRef]
  34. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590-592 (1994). [CrossRef] [PubMed]
  35. D. Faber, F. van der Meer, M. Aalders, and T. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353-4365 (2004). [CrossRef] [PubMed]
  36. G. Zaccanti, S. D. Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42, 4023-4030 (2003). [CrossRef] [PubMed]
  37. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, and A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt. 28, 2318-2324 (1989). [CrossRef] [PubMed]
  38. W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  39. R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “in vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1715-1720(2007). [CrossRef]
  40. W. D. James, L. R. Hirsch, J. L. West, P. D. O'Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radiol. Nucl. Chem. 271, 455-459 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited