OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 7 — Jul. 1, 2009

Whole blood reflectance for assessment of hematologic condition and detection of angiographic contrast media

Hyeonsoo Chang, Young L. Kim, Ali Hassan, and Peter J. Fitzgerald  »View Author Affiliations


Applied Optics, Vol. 48, Issue 13, pp. 2435-2443 (2009)
http://dx.doi.org/10.1364/AO.48.002435


View Full Text Article

Enhanced HTML    Acrobat PDF (836 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present simple whole blood reflectance analyses in the range 500– 900 nm , using intact whole blood to simultaneously quantify hematocrit and oxygen saturation from a single spectral reading. We applied these results for the development of an intravascular catheter-based reflectance sensing system to detect and remove contrast media injected during angiography so as to reduce the risk of complications associated with the injected contrast media. We further tested the practicality of the optical detection of angiographic contrast media in a pilot animal study in vivo. We successfully demonstrated the feasibility of real-time in vivo contrast detection and removal during angiography. Our simple method for the detection and removal of angiographic contrast media will facilitate the development of intravascular optical sensing systems.

© 2009 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 1, 2008
Revised Manuscript: March 16, 2009
Manuscript Accepted: March 28, 2009
Published: April 22, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Hyeonsoo Chang, Young L. Kim, Ali Hassan, and Peter J. Fitzgerald, "Whole blood reflectance for assessment of hematologic condition and detection of angiographic contrast media," Appl. Opt. 48, 2435-2443 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-13-2435


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Vo-Dinh, Biomedical Photonics Handbook, 1st ed. (CRC Press, 2003). [CrossRef]
  2. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007).
  3. R. W. Katzberg, “Contrast-induced nephrotoxicity: clinical landscape,” Kidney Int. 69, S3-S7 (2006). [CrossRef]
  4. N. H. Strickland, M. W. Rampling, P. Dawson, and G. Martin, “Contrast media-induced effects on blood rheology and their importance in angiography,” Clin. Radiol. 45, 240-242 (1992). [CrossRef] [PubMed]
  5. W. H. Reinhart, B. Pleisch, L. G. Harris, and M. Lutolf, “Influence of contrast media (iopromide, ioxaglate, gadolinium-DOTA) on blood viscosity, erythrocyte morphology and platelet function,” Clin. Hemorheol. Microcirc. 32, 227-239 (2005). [PubMed]
  6. K. Katsanos, A. Moutzouri, D. Karnabatidis, D. Siablis, and G. Athanassiou, “Influence of contrast media on red blood cell deformability,” Clin. Hemorheol. Microcirc. 39, 87-91 (2008). [PubMed]
  7. P. A. McCullough, R. Wolyn, L. L. Rocher, R. N. Levin, and W. W. O'Neill, “Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality,” Am. J. Med. 103, 368-375 (1997). [CrossRef] [PubMed]
  8. G. Dangas, I. Iakovou, E. Nikolsky, E. D. Aymong, G. S. Mintz, N. N. Kipshidze, A. J. Lansky, I. Moussa, G. W. Stone, J. W. Moses, M. B. Leon, and R. Mehran, “Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables,” Am. J. Cardiol. 95, 13-19 (2005). [CrossRef]
  9. A. L. Bartorelli and G. Marenzi, “Contrast-induced nephropathy,” J. Interv. Cardiol. 21, 74-85 (2008). [CrossRef]
  10. M. Tepel, P. Aspelin, and N. Lameire, “Contrast-induced nephropathy: a clinical and evidence-based approach,” Circulation 113, 1799-1806 (2006). [CrossRef] [PubMed]
  11. A. M. Kelly, B. Dwamena, P. Cronin, S. J. Bernstein, and R. C. Carlos, “Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy,” Ann. Intern. Med. 148, 284-294 (2008). [PubMed]
  12. I. Michishita and Z. Fujii, “A novel contrast removal system from the coronary sinus using an adsorbing column during coronary angiography in a porcine model,” J. Am. Coll. Cardiol. 47, 1866-1870 (2006). [CrossRef] [PubMed]
  13. M.-R. Movahed, J. Wong, and S. Molloi, “Removal of iodine contrast from coronary sinus in swine during coronary angiography,” J. Am. Coll. Cardiol. 47, 465-467 (2006). [CrossRef] [PubMed]
  14. H. D. Danenberg, C. Lotan, B. Varshitski, S. Rosenheck, and A. T. Weiss, “Removal of contrast medium from the coronary sinus during coronary angiography: feasibility of a simple and available technique for the prevention of nephropathy,” Cardiovasc. Revasc. Med. 9, 9-13 (2008). [CrossRef] [PubMed]
  15. Y. Enson, W. A. Briscoe, M. L. Polanyi, and A. Cournand, “In vivo studies with an intravascular and intracardiac reflection oximeter,” J. Appl. Physiol. 17, 552-558 (1962). [PubMed]
  16. N. S. Kapany, “Fiber optics oximeter-densitometer for cardiovascular studies,” Appl. Opt. 6, 565-570 (1967). [CrossRef] [PubMed]
  17. F. Tremolieres, F. Lecompte, M. Sinet, A. Chirico, J. Bech, J. M. Vallois, M. C. Blayo, and J. J. Pocidalo, “In vivo measurements of oxyhaemoglobin saturation by a fiberoptic catheter,” Intensive Care Med. 2, 177-180 (1976). [CrossRef]
  18. M. L. Landsman, N. Knop, G. Kwant, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection oximeter,” Pfluegers Arch. Eur. J. Physiol. 373, 273-282 (1978). [CrossRef]
  19. M. L. Landsman, N. Knop, G. A. Mook, and W. G. Zijlstra, “A fiberoptic reflection densitometer with cardiac output calculator,” Pfluegers Arch. Eur. J. Physiol. 379, 59-69 (1979). [CrossRef]
  20. J. Schmitt, F. Mihm, and J. Meindl, “New methods for whole blood oximetry,” Ann. Biomed. Eng. 14, 35-52 (1986). [CrossRef] [PubMed]
  21. S. Takatani, H. Noda, H. Takano, and T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187-198 (1988). [CrossRef] [PubMed]
  22. T. Kaiwa, T. Mori, T. Kijima, M. Nogawa, C. Nojiri, and S. Takatani, “Measurement of blood hematocrit inside the magnetically suspended centrifugal pump using an optical technique: application to assessment of pump flow,” Artif. Organs 23, 490-495 (1999). [CrossRef] [PubMed]
  23. A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6, 457-467 (2001). [CrossRef] [PubMed]
  24. Y. Mendelson, R. M. Lewinsky, and Y. Wasserman, “Multi-wavelength reflectance pulse oximetry,” Anesth. Analg. (Baltimore) 94, S26-S30 (2002).
  25. T. Yasuda, T. Saito, T. Kihara, S. Takatani, and A. Funakubo, “Development of a reflected optical fiber system for measuring oxygen saturation in an integrated artificial heart-lung system,” Artif. Organs 32, 229-234 (2008). [CrossRef] [PubMed]
  26. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4, 36-46(1999). [CrossRef]
  27. D. K. Sardar and L. B. Levy, “Optical properties of whole blood,” Lasers Med. Sci. 13, 106-111 (1998). [CrossRef]
  28. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004). [CrossRef] [PubMed]
  29. M. Friebel, A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006). [CrossRef]
  30. M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12, 014024(2007). [CrossRef] [PubMed]
  31. R. J. Zdrojkowski and N. R. Pisharoty, “Optical transmission and reflection by blood,” IEEE Trans. Bio-Med. Eng. BME-17, 122-128 (1970). [CrossRef]
  32. C. C. Johnson, “Optical diffusion in blood,” IEEE Trans. Bio-Med. Eng. BME-17, 129-133 (1970). [CrossRef]
  33. L. Reynolds, C. Johnson, and A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters,” Appl. Opt. 15, 2059-2067 (1976). [CrossRef] [PubMed]
  34. J. M. Steinke and A. P. Shepherd, “Diffuse reflectance of whole blood: model for a diverging light beam,” IEEE Trans. Bio-Med. Eng. BME-34, 826-834 (1987). [CrossRef]
  35. J. M. Steinke and A. P. Shepherd, “Reflectance measurements of hematocrit and oxyhemoglobin saturation,” Am. J. Physiol. Heart Circ. Physiol. 253, H147-H153 (1987).
  36. J. M. Steinke and A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027-4033 (1988).2 [CrossRef] [PubMed]
  37. G. Yoon, S. A. Prahl, and A. J. Welch, “Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media,” Appl. Opt. 28, 2250-2255 (1989). [CrossRef] [PubMed]
  38. A. Kienle, “Anisotropic light diffusion: an oxymoron?,” Phys. Rev. Lett. 98, 218104 (2007). [CrossRef] [PubMed]
  39. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998). [CrossRef]
  40. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256 (2003). [CrossRef]
  41. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37, 7410-7418 (1998). [CrossRef]
  42. S. Mohapatra and C. Smith, “Infrared isobestic region for whole blood,” Med. Biol. Eng. Comput. 13, 929-931 (1975).
  43. J. Ling, S. Takatani, G. P. Noon, and Y. Nose, “In-vivo studies of reflectance pulse oximeter sensor,” in Physiological Imaging, Spectroscopy, and Early-Detection Diagnostic Methods (SPIE, 1993), pp. 256-262.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited