OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 8 — Jul. 30, 2009

Applying narrowband remote-sensing reflectance models to wideband data

ZhongPing Lee  »View Author Affiliations


Applied Optics, Vol. 48, Issue 17, pp. 3177-3183 (2009)
http://dx.doi.org/10.1364/AO.48.003177


View Full Text Article

Enhanced HTML    Acrobat PDF (487 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Remote sensing of coastal and inland waters requires sensors to have a high spatial resolution to cover the spatial variation of biogeochemical properties in fine scales. High spatial-resolution sensors, however, are usually equipped with spectral bands that are wide in bandwidth ( 50 nm or wider). In this study, based on numerical simulations of hyperspectral remote-sensing reflectance of optically-deep waters, and using Landsat band specifics as an example, the impact of a wide spectral channel on remote sensing is analyzed. It is found that simple adoption of a narrowband model may result in > 20 % underestimation in calculated remote-sensing reflectance, and inversely may result in > 20 % overestimation in inverted absorption coefficients even under perfect conditions, although smaller ( 5 % ) uncertainties are found for higher absorbing waters. These results provide a cautious note, but also a justification for turbid coastal waters, on applying narrowband models to wideband data.

© 2009 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.4991) Remote sensing and sensors : Passive remote sensing
(010.1690) Atmospheric and oceanic optics : Color

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: November 24, 2008
Revised Manuscript: March 2, 2009
Manuscript Accepted: March 11, 2009
Published: June 5, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Citation
ZhongPing Lee, "Applying narrowband remote-sensing reflectance models to wideband data," Appl. Opt. 48, 3177-3183 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-17-3177


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. IOCCG, “Remote sensing of ocean colour in coastal, and other optically-complex, waters,” in Reports of the International Ocean-Colour Coordinating Group, No.3, S. Sathyendranath, ed. (IOCCG, 2000).
  2. IOCCG, “Why ocean colour? The societal benefits of ocean-colour technology,” in Reports of the International Ocean-Colour Coordinating Group, No. 7, T. Platt, N. Hoepffner, V. Stuart, and C. Brown, eds. (IOCCG, 2008).
  3. URL: http://modis.gsfc.nasa.gov/about/specifications.php
  4. URL: http://Landsat.usgs.gov/
  5. URL: http://www.geoeye.com
  6. URL: http://www.digitalglobe.com
  7. URL: http://www.eorc.jaxa.jp/ALOS/en
  8. IOCCG, “Status and plans for satellite ocean-color missions: considerations for complementary missions,” in Reports of the International Ocean-Colour Coordinating Group, No. 2, J. A. Yoder, ed. (IOCCG, 1998).
  9. URL: http://eros.usgs.gov/products/satellite/eo1.php
  10. Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007). [CrossRef]
  11. V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378-1387 (2003). [CrossRef]
  12. A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data,” Int. J. Remote Sensing 23, 15-35 (2002). [CrossRef]
  13. F. L. Hellweger, P. Schlosser, U. Lall, and J. K. Weissel, “Use of satellite imagery for water quality studies in New York Harbor,” Remote Sens. Environ. 61, 437-448 (2004).
  14. R. K. Vincent, X. Qin, R. M. L. McKay, J. Miner, K. Czajkowski, J. Savino, and T. Bridgeman, “Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie,” Remote Sens. Environ. 89, 381-392 (2004). [CrossRef]
  15. Y. Zhang, J. T. Pulliainen, S. S. Koponen, and M. T. Hallikaine, “Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland,” IEEE Trans. Geosci. Remote Sens. 41, 622-629 (2003). [CrossRef]
  16. R. P. Stumpf, K. Holderied, and M. Sinclair, “Determination of water depth with high-resolution satellite imagery over variable bottom types,” Limnol. Oceanogr. 48, 547-556 (2003). [CrossRef]
  17. D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149-161 (2002). [CrossRef]
  18. A. W.-C. Heng, S. C. Liew, and C. W. Chang, “Retrieval of inherent optical properties from Landsat ETM+data: possibilities and limitations,” in Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), pp. 3487-3488.
  19. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).
  20. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909-10,924(1988). [CrossRef]
  21. Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance,” Appl. Opt. 43, 4957-4964 (2004). [CrossRef] [PubMed]
  22. R. W. Preisendorfer, Hydrologic Optics Vol. 1: Introduction (National Technical Information Service, 1976).
  23. Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755-5772 (2002). [CrossRef] [PubMed]
  24. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705-2714 (2002). [CrossRef] [PubMed]
  25. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999). [CrossRef]
  26. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  27. R. Pope and E. Fry, “Absorption spectrum (380-700 nm) of pure waters: II. Integrating cavity measurements,” Appl. Opt. 36, 8710-8723 (1997). [CrossRef]
  28. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  29. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, ed. (Academic, 1974), pp. 1-24.
  30. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 1. A semianalytical model,” Appl. Opt. 37, 6329-6338 (1998). [CrossRef]
  31. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981). [CrossRef]
  32. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, 1994). [CrossRef]
  33. URL: http://Landsathandbook.gsfc.nasa.gov/
  34. R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).
  35. A. G. Dekker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41, 211-225 (1992). [CrossRef]
  36. Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007). [CrossRef]
  37. IOCCG, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z. -P. Lee, ed. (IOCCG, 2006), p. 126.
  38. C. Hu, F. E. Muller-Karger, S. Andrefouet, and K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+imagery over aquatic environments: a multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78, 99-107 (2001). [CrossRef]
  39. S. Liang, H. Fang, and M. Chen, “Atmospheric correction of Landsat ETM+Land surface imagery--part I: methods,” IEEE Trans. Geosci. Remote Sens. 39, 2490-2498 (2001). [CrossRef]
  40. S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanogr. 39, 1689-1703 (1994). [CrossRef]
  41. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831-3843 (1999). [CrossRef]
  42. Z. P. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41, 2191-2201 (2002). [CrossRef] [PubMed]
  43. R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, “Calibration of SeaWiFS. II. Vicarious techniques,” Appl. Opt. 40, 6701-6718 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited