OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 8 — Jul. 30, 2009

Simple spatial phase modulator for focal modulation microscopy

Chee Howe Wong, Shau Poh Chong, Colin J. R. Sheppard, and Nanguang Chen  »View Author Affiliations


Applied Optics, Vol. 48, Issue 17, pp. 3237-3242 (2009)
http://dx.doi.org/10.1364/AO.48.003237


View Full Text Article

Enhanced HTML    Acrobat PDF (545 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Focal modulation microscopy (FMM) is an emerging microscopy technique for fluorescence imaging of thick biological tissue in vivo. A spatial phase modulator is a critical component whose characteristics have a significant impact on the performance of a FMM system. We have designed a simple spatial phase modulator based on a tilting glass plate that provides superb modulation stability. Image quality has been improved remarkably after integrating such a modulator into a FMM system.

© 2009 Optical Society of America

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(180.2520) Microscopy : Fluorescence microscopy
(230.4110) Optical devices : Modulators
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Microscopy

History
Original Manuscript: February 18, 2009
Revised Manuscript: May 19, 2009
Manuscript Accepted: May 20, 2009
Published: June 8, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Chee Howe Wong, Shau Poh Chong, Colin J. R. Sheppard, and Nanguang Chen, "Simple spatial phase modulator for focal modulation microscopy," Appl. Opt. 48, 3237-3242 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-17-3237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Waggoner, “Fluorescent labels for proteomics and genomics,” Curr. Opin. Chem. Biol. 10, 62-66 (2006). [CrossRef] [PubMed]
  2. R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem. 67, 509-544 (1998). [CrossRef] [PubMed]
  3. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36, R207-R227 (2003). [CrossRef]
  4. G. E. Anderson, F. Liu, and R. R. Alfano, “Microscope imaging through highly scattering media,” Opt. Lett. 19, 981-983(1994). [CrossRef] [PubMed]
  5. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, and I. L. Kon, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401-417 (1997). [CrossRef]
  6. M. Minsky, “Microscopy apparatus,” U.S. patent 3,013,467 (19 December 1961).
  7. C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051-1073 (1977). [CrossRef]
  8. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59, 427-471 (1996). [CrossRef]
  9. J. M. Schmitt, A. Knüttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226-2235(1994). [CrossRef]
  10. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990). [CrossRef] [PubMed]
  11. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29-37 (2001). [CrossRef] [PubMed]
  12. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3regenerative amplifier,” Opt. Lett. 28, 1022-1024(2003). [CrossRef] [PubMed]
  13. X. Deng and M. Gu, “Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation,” Appl. Opt. 42, 3321-3329 (2003). [CrossRef] [PubMed]
  14. M. Kempe, W. Rudolph, and E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46-52 (1996). [CrossRef]
  15. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  16. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361-1367(2003). [CrossRef] [PubMed]
  17. N. Chen, C. Wong, and C. J. R. Sheppard, “Focal modulation microscopy,” Opt. Express 16, 18764-18769 (2008). [CrossRef]
  18. MeadowLark Optics spatial light modulator, http://www.meadowlarkoptics.com/products/slmLanding.php.
  19. V. Kalchenko, S. Shivtiel, V. Malina, K. Lapid, S. Haramati, T. Lapidot, A. Brill, and A. Harmelin, “Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing,” J. Biomed. Opt. 11, 050507 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited