OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 8 — Jul. 30, 2009

High-speed linear detection time domain optical coherence tomography with reflective grating-generated spatial reference delay

Yuuki Watanabe, Fumitoshi Sajima, Toshiki Itagaki, Kei Watanabe, and Yuuki Shuto  »View Author Affiliations


Applied Optics, Vol. 48, Issue 18, pp. 3401-3406 (2009)
http://dx.doi.org/10.1364/AO.48.003401


View Full Text Article

Enhanced HTML    Acrobat PDF (579 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed a high-speed linear detection time-domain optical coherence tomography (OCT) technique that detected a reflective grating-generated spatial optical delay in the reference arm using a line scan camera during probe-beam scanning. Using an InGaAs line scan camera (512 pixels) operating at 47 , 000   lines / s , the calculation of the absolute value of the difference between two sequential lines can be approximately displayed as cross-sectional images with 500 lateral pixels at 94   frames / s . After data acquisition, we performed postprocessing that involves a Hilbert transform to improve the image quality of an OCT image. Our OCT system was successfully used to image a human finger in vivo with 93 dB sensitivity.

© 2009 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Imaging Systems

History
Original Manuscript: January 8, 2009
Revised Manuscript: April 18, 2009
Manuscript Accepted: May 24, 2009
Published: June 18, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Yuuki Watanabe, Fumitoshi Sajima, Toshiki Itagaki, Kei Watanabe, and Yuuki Shuto, "High-speed linear detection time domain optical coherence tomography with reflective grating-generated spatial reference delay," Appl. Opt. 48, 3401-3406 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-18-3401


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995). [CrossRef]
  3. G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  4. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  5. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking:unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975-2977 (2006). [CrossRef] [PubMed]
  6. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149-15169 (2008). [CrossRef] [PubMed]
  7. I. Zeylikovich, A. Gilerson, and R. R. Alfano, “Nonmechanical grating-generated scanning coherence microscopy,” Opt. Lett. 23, 1797-1799 (1998). [CrossRef]
  8. Y. Watanabe, K. Yamada, and M. Sato, “In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera,” Opt. Commun. 261, 376-380 (2006). [CrossRef]
  9. Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,” Opt. Express 14, 5201-5209(2006). [CrossRef] [PubMed]
  10. Y. Watanabe, Y. Takasugi, K. Yamada, and M. Sato, “Axial-lateral parallel time domain OCT with optical zoom lens and high order diffracted lights for variable imaging range,” Opt. Express 15, 5208-5217 (2007). [CrossRef] [PubMed]
  11. Y. Watanabe and M. Sato, “Quasi-single shot axial-lateral parallel time domain optical coherence tomography with Hilbert transformation,” Opt. Express 16, 524-534 (2008). [CrossRef] [PubMed]
  12. G. Brun, I. Verrier, A. Barthélémy, C. Froehly, and J. P. Goure, “Measurements of mode propagation time in multimode fibers using a real-time interferometric amplitude correlator,” J. Opt. Commun. 13, 134-139 (1992). [CrossRef]
  13. I. Zeylikovich and R. R. Alfano, “Ultrafast dark-field interferometric microscopic reflectometry,” Opt. Lett. 21, 1682-1684(1996). [CrossRef] [PubMed]
  14. I. Verrier, G. Brun, and J. P. Goure, “SISAM interferometer for distance measurements,” Appl. Opt. 36, 6225-6230 (1997). [CrossRef]
  15. P. Koch, V. Hellemanns, and G. Hüttmann, “Linear optical coherence tomography system with extended measurement range,” Opt. Lett. 31, 2882-2884 (2006). [CrossRef] [PubMed]
  16. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805-812 (2002). [CrossRef] [PubMed]
  17. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776-11781(2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MOV (3315 KB)     
» Media 2: MOV (3336 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited