OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 9 — Sep. 4, 2009

Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor

Sachin K. Srivastava, Rajneesh K. Verma, and Banshi D. Gupta  »View Author Affiliations


Applied Optics, Vol. 48, Issue 19, pp. 3796-3802 (2009)
http://dx.doi.org/10.1364/AO.48.003796


View Full Text Article

Enhanced HTML    Acrobat PDF (519 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A localized surface plasmon resonance based fiber optic sensor for refractive index sensing has been analyzed theoretically. The effects of size of the spherical metal nanoparticle as well as the light sources on the performance of the sensor have been studied rigorously. It is observed that a diffuse light source along with an intensity modulation method gives better performance in terms of sensing range. In addition, the use of a diffuse source makes the sensing device very cheap and compact, which is an important issue for the commercial applications. The refractive index range of the sensor is larger than the ranges reported for various types of fiber optic sensors utilizing intensity modulation.

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.3670) Optical devices : Light-emitting diodes
(240.6680) Optics at surfaces : Surface plasmons
(290.2200) Scattering : Extinction

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 21, 2009
Revised Manuscript: June 7, 2009
Manuscript Accepted: June 15, 2009
Published: June 25, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Sachin K. Srivastava, Rajneesh K. Verma, and Banshi D. Gupta, "Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor," Appl. Opt. 48, 3796-3802 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-19-3796


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. B. Guo, G. Song, and L. Chen, “Numerical study of subwavelength plasmonic waveguide,” Opt. Commun. 281, 1123-1128 (2008). [CrossRef]
  3. B. Leidberg, C. Nylander, and I. Sundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators A, Phys. 4, 299-304 (1983). [CrossRef]
  4. I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74, 237-244 (1978). [CrossRef]
  5. R. Slavík, J. Homola, J. Ctyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001). [CrossRef]
  6. Rajan, S. Chand, and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber-optic sensor for bittering component--Naringin,” Sens. Actuators B 115, 344-348 (2006). [CrossRef]
  7. Rajan , S. Chand, and B. D. Gupta, “Surface plasmon resonance based fiber-optic sensor for the detection of pesticide,” Sens. Actuators B 123, 661-666 (2007). [CrossRef]
  8. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213-220 (1993). [CrossRef]
  9. R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486-1491 (2008). [CrossRef]
  10. R. K. Verma and B. D. Gupta, “Theoretical modeling of a bi-dimensional U-shaped surface plasmon resonance based fiber optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008). [CrossRef]
  11. A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B 100, 423-431 (2004). [CrossRef]
  12. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788-800 (1996). [CrossRef]
  13. U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156 (Part 2), 678-700 (1985). [CrossRef]
  14. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212-4217 (1999). [CrossRef]
  15. K.-H. Meiwes-Broer, Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry (Springer, 2000).
  16. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685-1706 (2004). [CrossRef]
  17. A. J. Haes and R. P. V. Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379, 920-930 (2004). [CrossRef] [PubMed]
  18. L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100-105(2006). [CrossRef]
  19. T.-J. Lin and M.-F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosens. Bioelectron. 24, 1213-1218 (2009). [CrossRef]
  20. T.-J. Lin and C.-T. Lou, “Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions,” J. Supercrit. Fluids 41, 317-325 (2007). [CrossRef]
  21. V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804-2809 (2009). [CrossRef] [PubMed]
  22. W. Ding, S. R. Andrews, T. A. Birks, and S. A. Maier, “Modal coupling in fiber tapers decorated with metallic surface gratings,” Opt. Lett. 31, 2556-2558 (2006). [CrossRef] [PubMed]
  23. B. D. Gupta, A. Sharma, and C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers,” Int. J. Optoelectron. 8, 409-418 (1993).
  24. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1999).
  25. Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of skew rays on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon-resonance sensor: a theoretical study,” Appl. Opt. 46, 4563-4569 (2007). [CrossRef] [PubMed]
  26. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1985).
  27. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099-1119(1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited