OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 9 — Sep. 4, 2009

Three-dimensional ray tracing on Delaunay-based reconstructed surfaces

Sergio Ortiz, Damian Siedlecki, Laura Remon, and Susana Marcos  »View Author Affiliations


Applied Optics, Vol. 48, Issue 20, pp. 3886-3893 (2009)
http://dx.doi.org/10.1364/AO.48.003886


View Full Text Article

Enhanced HTML    Acrobat PDF (1036 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method of ray tracing for free-form optical surfaces has been developed. The ray tracing through such surfaces is based on Delaunay triangulation of the discrete data of the surface and is related to finite-element modeling. Some numerical examples of applications to analytical, noisy, and experimental free-form surfaces (in particular, a corneal topography map) are presented. Ray-tracing results (i.e., spot diagram root-mean-square error) with the new method are in agreement with those obtained using a modal fitting of the surface, for sampling densities higher than 40 × 40 elements. The method competes in flexibility, simplicity, and computing times with standard methods for surface fitting and ray tracing.

© 2009 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(080.1753) Geometric optics : Computation methods
(330.4875) Vision, color, and visual optics : Optics of physiological systems
(330.7326) Vision, color, and visual optics : Visual optics, modeling

History
Original Manuscript: May 27, 2009
Manuscript Accepted: June 13, 2009
Published: July 1, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Sergio Ortiz, Damian Siedlecki, Laura Remon, and Susana Marcos, "Three-dimensional ray tracing on Delaunay-based reconstructed surfaces," Appl. Opt. 48, 3886-3893 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-20-3886


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. T. Moore, “Ray tracing in tilted, decentered, displaced gradient-index optical systems,” J. Opt. Soc. Am. 66, 789-795 (1976). [CrossRef]
  2. A. Sharma, D. V. Kumar, and A. K. Ghatak, “Tracing rays through graded-index media: a new method,” Appl. Opt. 21, 984-987 (1982). [CrossRef] [PubMed]
  3. E. W. Marchand, “Rapid ray tracing in radial gradients,” Appl. Opt. 27, 465-467 (1988). [CrossRef] [PubMed]
  4. R. A. Egorchenkov and Y. A. Kravtsov, “Complex ray-tracing algorithms with application to optical problems,” J. Opt. Soc. Am. A 18, 650-656 (2001). [CrossRef]
  5. O. N. Stavroudis, “Ray-tracing formulas for uniaxial crystals,” J. Opt. Soc. Am. 52, 187-191 (1962). [CrossRef]
  6. Q. T. Liang and X. D. Zheng, “Ray-tracing calculations for uniaxial optical components with curved surfaces,” Appl. Opt. 30, 4521-4525 (1991). [CrossRef] [PubMed]
  7. G. Beyerle and I. S. McDermid, “Ray-tracing formulas for refraction and internal reflection in uniaxial crystals,” Appl. Opt. 37, 7947-7953 (1998). [CrossRef]
  8. M. Izdebski, “Ray and wave tracing in uniaxial crystals perturbed by an external field,” Appl. Opt. 47, 2729-2738 (2008). [CrossRef] [PubMed]
  9. X. Tian, G. Lai, and T. Yatagai, “Characterization of asymmetric optical waveguides by ray tracing,” J. Opt. Soc. Am. A 6, 1538-1543 (1989). [CrossRef]
  10. J. S. Witkowski and A. Grobelny, “Ray tracing method in a 3D analysis of fiber-optic elements,” Opt. Appl. 38, 281-294(2008).
  11. W. A. Allen and J. R. Snyder, “Ray tracing through uncentered and aspheric surfaces,” J. Opt. Soc. Am. 42, 243-249 (1952). [CrossRef]
  12. M. Herzberger, “Automatic ray tracing,” J. Opt. Soc. Am. 47, 736-739 (1957). [CrossRef]
  13. G. H. Spencer and M. V. R. K. Murty, “General ray-tracing procedure,” J. Opt. Soc. Am. 52, 672-678 (1962). [CrossRef]
  14. A. Sharma and A. K. Ghatak, “Ray tracing in gradient-index lenses: computation of ray-surface intersection,” Appl. Opt. 25, 3409-3412 (1986). [CrossRef] [PubMed]
  15. R. A. Applegate, H. C. Howland, J. Buettner, A. J. Cottinghan, Jr., R. P. Sharp, and R. W. Yee, “Corneal aberrations before and after radial keratotomy (RK) calculated from videokeratometric measurements,” in Vision Science and Its Applications, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), pp. 58-61.
  16. H. C. Howland, J. Buettner, and R. A. Applegate, “Computation of the shapes of normal corneas and their monochromatic aberrations from videokeratometric measurements,” in Vision Science and Its Applications, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), pp. 54-57.
  17. P. Artal and A. Guirao, “Contributions of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713-1715 (1998). [CrossRef]
  18. A. Guirao and P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955-965 (2000). [CrossRef]
  19. A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697-1702 (2000). [CrossRef]
  20. S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594-1600 (2002). [CrossRef] [PubMed]
  21. L. A. Carvalho, “Computer algorithm for simulation of the human optical system and contribution of the cornea to the optical imperfections of the eye,” Revista de Física Aplicada e Instrumentação 16, 7-17 (2003).
  22. J. C. He, J. Gwiazda, F. Thorn, and R. Held, “Wave-front aberrations in the anterior corneal surface and the whole eye,” J. Opt. Soc. Am. A 20, 1155-1163 (2003). [CrossRef]
  23. R. Navarro, L. González, and J. L. Hernández-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371-381 (2006). [CrossRef] [PubMed]
  24. P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15, 2204-2218 (2007). [CrossRef] [PubMed]
  25. B. Delaunay, “Sur la sphère vide,” Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793-800 (1934).
  26. L. Guibas, D. Knuth, and M. Sharir, “Randomized incremental construction of Delaunay and Voronoi diagrams,” Algorithmica 7, 381-413 (1992). [CrossRef]
  27. C. Touma and C. Gotsman, “Triangle mesh compression,” in Proceedings of Graphics Interface '98 26-34 (Canadian Information Processing Society, 1998).
  28. J. Kohout, J. I. Kolingerová, and J. Žára, “Parallel Delaunay triangulation in E2 and E3 for computers with shared memory,” Parallel Comput. 31, 491-522 (2005). [CrossRef]
  29. D. S. Kang, Y. J. Kim, and B. S. Shin, “Efficient large-scale terrain rendering method for real-world game simulation,” in Technologies for E-Learning and Digital Entertainment: First International Conference, Edutainment 2006 (Springer, 2006), pp. 597-605. [CrossRef] [PubMed]
  30. Zemax Optical Design Program User's Manual (Zemax Development Corporation, 2007).
  31. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional optical distortion correction for quantitative anterior segment OCT,” Invest. Ophthalmol. Vis. Sci. 50, 5796(2009), abstract.
  32. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004). [CrossRef] [PubMed]
  33. V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle,” Opt. Express 10, 397-404 (2002). [PubMed]
  34. G. Strang and G. Fix, An Analysis of the Finite Element Method (Prentice-Hall, 1973).
  35. P. L. George and H. Borouchaki, Delaunay Triangulation and Meshing (Editions Hermes, 1998).
  36. R. Vanselow, “About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation,” Appl. Math. 46, 13-28 (2001). [CrossRef]
  37. N. Calvo, S. R. Idelsohn, and E. Onate, “The extended Delaunay tessellation,” Eng. Computat. 20, 583-600 (2003). [CrossRef]
  38. I. Babuska, U. Banerjee, and J. E. Osborn, “Generalized finite element methods: main ideas, results, and perspective,” Int. J. Computat. Methods 1, 67-103 (2004). [CrossRef]
  39. H. S. M. Coxeter, “Barycentric Coordinates,” in Introduction to Geometry, H. S. M. Coxeter, ed. (Wiley, 1969), pp. 216-221.
  40. It may happen that the point P is located on the edge of the triangle (when either u or v from Eq. is equal to 0, or u+v=1), or even in the vertex (when both u and v are equal to 0 or either u or v is equal to 1), which means that it is common to two or more of the triangles that have a common edge (vertex), but the vectors normal to these triangles are different. In this situation, it is convenient to consider the mean value of the normal vector coordinates for further ray tracing calculations.
  41. H. Wendland, Scattered Data Approximation (Cambridge U. Press, 2004). [CrossRef]
  42. F. L. Bookstein, “Principal warps: thin plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Machine Intell. 11, 567-585 (1989). [CrossRef]
  43. J. Allison, “Multiquadric radial basis functions for representing multidimensional high energy physics data,” Comput. Phys. Commun. 77, 377-395 (1993). [CrossRef]
  44. G. R. Liu, Mesh Free Methods: Moving Beyond the Finite Element Method (CRC Press, 2002). [CrossRef]
  45. It should be noted that in the original Sharma formula in , a square term of υ is missing. This has been corrected on Eq. .
  46. J. Schwiegerling, J. E. Greivenkamp, and J. M. Miller, “Representation of videokeratoscopic height data with Zernike polynomials,” J. Opt. Soc. Am. A 12, 2105-2113 (1995). [CrossRef]
  47. S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the calculation of corneal aberrations from videokeratography: a test on keratoconus eyes,” J. Refract. Surg. 18, 263-270 (2002). [PubMed]
  48. D. Malacara, Optical Shop Testing (Wiley, 1978).
  49. L. Tsang, J. A. Kong, K.-H. Ding, and C. O. Ao, “Random rough surface simulations,” in Scattering of Electromagnetic Waves: Numerical Simulations, L. Tsang, J. A. Kong, K. -H. Ding, and C. O. Ao, eds. (Wiley, 2001), pp. 124-132.
  50. P. Beckmann, “Scattering of light by rough surfaces,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1967), pp. 55-69.
  51. W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91, 207-225 (2008). [CrossRef] [PubMed]
  52. D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91, 251-264 (2008). [CrossRef] [PubMed]
  53. M. K. Smolek and S. D. Klyce, “Is keratoconus a true ectasia? An evaluation of corneal surface area,” Arch. Ophthalmol. 118, 1179-1186 (2000). [PubMed]
  54. W. A. Douthwaite, “Application of linear regression to videokeratoscope data for tilted surfaces,” Ophthal. Physiol. Opt. 22, 46-54 (2002). [CrossRef]
  55. V. A. D. P. Sicam, J. Coppens, T. J. T. P. van den Berg, and R. G. L. van der Heijde, “Corneal surface reconstruction algorithm that uses Zernike polynomial representation,” J. Opt. Soc. Am. A 21, 1300-1306 (2004). [CrossRef]
  56. J. Turuwhenua, “Corneal surface reconstruction algorithm using Zernike polynomial representation: improvements,” J. Opt. Soc. Am. A 24, 1551-1561 (2007). [CrossRef]
  57. D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48, 87-95 (2001). [CrossRef] [PubMed]
  58. L. Llorente, S. Marcos, C. Dorronsoro, and S. A. Burns, “Effect of sampling on real ocular aberration measurements,” J. Opt. Soc. Am. A 24, 2783-2796 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited