OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 9 — Sep. 4, 2009

Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm

Nishant Mohan, Olga Minaeva, Gregory N. Goltsman, Mohammed F. Saleh, Magued B. Nasr, Alexander V. Sergienko, Bahaa E.A. Saleh, and Malvin C. Teich  »View Author Affiliations


Applied Optics, Vol. 48, Issue 20, pp. 4009-4017 (2009)
http://dx.doi.org/10.1364/AO.48.004009


View Full Text Article

Enhanced HTML    Acrobat PDF (967 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coherence-domain imaging systems can be operated in a single-photon-counting mode, offering low detector noise; this in turn leads to increased sensitivity for weak light sources and weakly reflecting samples. We have demonstrated that excellent axial resolution can be obtained in a photon-counting coherence-domain imaging (CDI) system that uses light generated via spontaneous parametric downconversion (SPDC) in a chirped periodically poled stoichiometric lithium tantalate (chirped-PPSLT) structure, in conjunction with a niobium nitride superconducting single-photon detector (SSPD). The bandwidth of the light generated via SPDC, as well as the bandwidth over which the SSPD is sensitive, can extend over a wavelength region that stretches from 700 to 1500 nm . This ultrabroad wavelength band offers a near-ideal combination of deep penetration and ultrahigh axial resolution for the imaging of biological tissue. The generation of SPDC light of adjustable bandwidth in the vicinity of 1064 nm , via the use of chirped-PPSLT structures, had not been previously achieved. To demonstrate the usefulness of this technique, we construct images for a hierarchy of samples of increasing complexity: a mirror, a nitrocellulose membrane, and a biological sample comprising onion-skin cells.

© 2009 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(110.4500) Imaging systems : Optical coherence tomography
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Imaging Systems

History
Original Manuscript: April 23, 2009
Manuscript Accepted: June 11, 2009
Published: July 8, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Nishant Mohan, Olga Minaeva, Gregory N. Goltsman, Mohammed F. Saleh, Magued B. Nasr, Alexander V. Sergienko, Bahaa E. Saleh, and Malvin C. Teich, "Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm," Appl. Opt. 48, 4009-4017 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-20-4009


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007), Sections 11.2B, 21.2E, and 24.5.
  2. M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic, 2006).
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  4. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861-865 (1998). [CrossRef] [PubMed]
  5. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325-332 (1995). [CrossRef] [PubMed]
  6. J. Welzel, “Optical coherence tomography in dermatology: A review,” Skin Res. and Technol. 7, 1-9 (2001). [CrossRef]
  7. G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107, 113-119 (2003). [CrossRef] [PubMed]
  8. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007). [CrossRef]
  9. W. Drexler, “Ultra-high resolution optical coherence tomography,” J Biomed. Opt. 9, 47-74 (2004). [CrossRef] [PubMed]
  10. N. Mohan, O. Minaeva, G. N. Goltsman, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Photon-counting optical coherence-domain reflectometry using superconducting single-photon detectors,” Opt. Express 16, 18118-18130 (2008). [CrossRef] [PubMed]
  11. S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by noncollinear parametric downconversion,” Opt. Lett. 31, 253-255 (2006). [CrossRef] [PubMed]
  12. S. E. Harris, “Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007). [CrossRef] [PubMed]
  13. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008). [CrossRef] [PubMed]
  14. M. B. Nasr, O. Minaeva, G. N. Goltsman, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors,” Opt. Express 16, 15104-15108 (2008). [CrossRef] [PubMed]
  15. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194-196 (2003). [CrossRef] [PubMed]
  16. G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705-707 (2001). [CrossRef]
  17. G. N. Goltsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 192-195 (2003). [CrossRef]
  18. G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005). [CrossRef]
  19. M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154-1159 (2009). [CrossRef]
  20. H. Lim, Y. Jiang, Y. Wang, Y. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm,” Opt. Lett. 30, 1171-1173 (2005). [CrossRef] [PubMed]
  21. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800-1802 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited