OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Bragg grating based biochemical sensor using submicron Si / Si O 2 waveguides for lab-on-a-chip applications: a novel design

Saurabh Mani Tripathi, Arun Kumar, Emmanuel Marin, and Jean-Pierre Meunier  »View Author Affiliations


Applied Optics, Vol. 48, Issue 23, pp. 4562-4567 (2009)
http://dx.doi.org/10.1364/AO.48.004562


View Full Text Article

Enhanced HTML    Acrobat PDF (856 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel biochemical sensor based on a submicrometer size, high core–cladding index difference, silica core Si– Si O 2 waveguide with a Bragg grating written in its cladding region is proposed and analyzed. Waveguide parameters are optimized to obtain maximum sensitivity, and for lower refractive index samples, an optimum core width is found to exist for both the TE and the TM mode configurations. Owing to the high index contrast at the Si– Si O 2 interface, the structure is much more sensitive while operating in the TM mode configuration, showing extremely high sensitivity [200–740 nm refractive index units (RIU)] for the ambient refractive indices between 1.33 and 1.63, which is of the order of most surface plasmon polariton (SPP) based biosensors. Further, unlike SPP based sensors, the proposed structure is free from any metallic layer or bulky prism and hence easy to realize. Owing to its simple structure and small dimensions, the proposed device could be easily integrated with planar lightwave circuits and could be used for lab-on-a-chip applications.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors

ToC Category:
Integrated Optics

History
Original Manuscript: January 27, 2009
Revised Manuscript: May 29, 2009
Manuscript Accepted: July 17, 2009
Published: August 4, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Saurabh Mani Tripathi, Arun Kumar, Emmanuel Marin, and Jean-Pierre Meunier, "Bragg grating based biochemical sensor using submicron Si/SiO2 waveguides for lab-on-a-chip applications: a novel design," Appl. Opt. 48, 4562-4567 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-23-4562


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465-466 (1987). [CrossRef]
  2. H. G. Park, S. Y. Huang, and B. Y. Kim, “All-optical intermodal switch using periodic coupling in a two mode waveguide,” Opt. Lett. 14, 877-879 (1989). [CrossRef] [PubMed]
  3. J. L. Archambault and S. G. Grubb, “Fiber gratings in lasers and amplifiers,” J. Lightwave Technol. 15, 1378-1390 (1997). [CrossRef]
  4. I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331-1333 (1997). [CrossRef]
  5. W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98-107 (1989).
  6. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442(1997). [CrossRef]
  7. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692-694 (1996). [CrossRef] [PubMed]
  8. J. Yang, L. Yang, C. Q. Xu, C. Xu, W. Huang, and Y. Li, “Long-period grating refractive index sensor with a modified cladding structure for large operational range and high sensitivity,” Appl. Opt. 45, 6142-6147 (2006). [CrossRef] [PubMed]
  9. J. Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006). [CrossRef]
  10. G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett. 31, 2118-2120(2006). [CrossRef] [PubMed]
  11. S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Side-polished optical fiber grating based refractive index sensors utilizing the pure surface plasmon polariton,” J. Lightwave Technol. 26, 1980-1985 (2008). [CrossRef]
  12. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32, 211-213(2007). [CrossRef] [PubMed]
  13. G.D. Emmerson, C. B. E. Gawith, I. J. G. Sparrow, R. B. Williams, and P. G. R. Smith, “Physical observation of single step UV-written integrated planar Bragg structures and their application as a refractive-index sensor,” Appl. Opt. 44, 5042-5045 (2005). [CrossRef] [PubMed]
  14. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005). [CrossRef]
  15. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000), Chap. 2.
  16. M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981), Chaps. 2 and 7.
  17. J. Albert, M. Fokine, and W. Margulis, “Grating formation in pure silica-core fibers,” Opt. Lett. 27, 809-811 (2002). [CrossRef]
  18. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  19. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626-1628 (2004). [CrossRef] [PubMed]
  20. K. K. Lee, D. R. Lim, and L. C. Kimerling, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888-1890 (2001). [CrossRef]
  21. “Lab on a Chip,” Nature (Insight supplement) 442, 367-418(2006).
  22. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391-416 (1990). [CrossRef]
  23. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  24. A. Kumar, K. Thyagarajan, and A. Ghatak, “Analysis of rectangular-core dielectric waveguides: an accurate perturbation approach,” Opt. Lett. 8, 63-65 (1983). [CrossRef] [PubMed]
  25. A. Densmore, D.-X Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522(2006). [CrossRef]
  26. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209-220 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited