OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Nanorod-mediated surface plasmon resonance sensor based on effective medium theory

Junxue Fu, Bosoon Park, and Yiping Zhao  »View Author Affiliations


Applied Optics, Vol. 48, Issue 23, pp. 4637-4649 (2009)
http://dx.doi.org/10.1364/AO.48.004637


View Full Text Article

Enhanced HTML    Acrobat PDF (2031 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate a nanorod-mediated surface plasmon resonance (SPR) sensor for sensitivity enhancement. The theoretical model containing an anisotropic layer of nanorod is investigated using four-layer Fresnel equations and the effective medium theory. The properties of the nanorod-mediated SPR curves versus the metal thin film thickness d f , length l, and diameter D of the nanorod are studied in the environment with refractive indices of 1.00 and 1.33. Compared to the conventional thin metal film SPR configuration, the nanorod-mediated SPR sensor presents a larger resonance angle shift and the sensitivity increases with increasing refractive index of the target analyte. Besides the theoretical analysis, we fabricate different Ag nanorod array/Ag film substrates by oblique angle deposition and characterize their SPR responses using a laboratory-made SPR setup in air and in deionized (DI) water. Compared with the Ag film sample, the SPR angles observed for Ag nanorods/Ag film samples shift to larger angles in air (for shorter nanorods), while it is hard to observe the SPR angle in DI water, which is qualitatively consistent with theoretical results. We believe that the nanorod-mediated SPR sensor is able to improve the sensitivity and the theoretical discussion is helpful for sensor fabrication.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2065) Physical optics : Effective medium theory
(220.4241) Optical design and fabrication : Nanostructure fabrication
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: March 12, 2009
Revised Manuscript: June 21, 2009
Manuscript Accepted: July 17, 2009
Published: August 5, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Junxue Fu, Bosoon Park, and Yiping Zhao, "Nanorod-mediated surface plasmon resonance sensor based on effective medium theory," Appl. Opt. 48, 4637-4649 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-23-4637


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  2. C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405(2006). [CrossRef]
  3. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007). [CrossRef]
  4. N. Prabhakar, K. Arora, S. K. Arya, P. R. Solanki, M. Iwamoto, H. Singh, and B. D. Malhotra, “Nucleic acid sensor for M-tuberculosis detection based on surface plasmon resonance,” Analyst (Amsterdam) 133, 1587-1592 (2008).
  5. P. R. Solanki, N. Prabhakar, M. K. Pandey, and B. D. Malhotra, “Self-assembled monolayer for toxicant detection using nucleic acid sensor based on surface plasmon resonance technique,” Biomed Microdevices 10, 757-767 (2008). [CrossRef]
  6. A. D. Taylor, J. Ladd, S. Etheridge, J. Deeds, S. Hall, and S. Y. Jiang, “Quantitative detection of tetrodotoxin (TTX) by a surface plasmon resonance (SPR) sensor,” Sens. Actuators B 130, 120-128 (2008). [CrossRef]
  7. S. R. Seshadri, “Attenuated total reflection method of excitation of the surface polariton in the Kretschmann configuration,” J. Appl. Phys. 70, 3647-3654 (1991). [CrossRef]
  8. C. B. Su and J. Kameoka, “Forty-four pass fibre-optic loop for improving the sensitivity of surface plasmon resonance sensors,” Meas. Sci. Technol. 19, 015204 (2008). [CrossRef]
  9. B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40-46(2005). [CrossRef]
  10. R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008). [CrossRef]
  11. J. S. Yuk, D. G. Hong, J. W. Jung, S. H. Jung, H. S. Kim, J. A. Han, Y. M. Kim, and K. S. Ha, “Sensitivity enhancement of spectral surface plasmon resonance biosensors for the analysis of protein arrays,” Euro. Biophys. J. Biophys. Lett. 35, 469-476 (2006). [CrossRef]
  12. G. Gupta and J. Kondoh, “Tuning and sensitivity enhancement of surface plasmon resonance sensor,” Sens. Actuators B 122, 381-388 (2007). [CrossRef]
  13. X. C. Yuan, B. Hong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A Pure Appl. Opt. 8, 959-963 (2006). [CrossRef]
  14. S. Szunerits, X. Castel, and R. Boukherroub, “Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: influence on stability and sensitivity,” J. Phys. Chem. C 112, 15813-15817(2008). [CrossRef]
  15. P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. 20, 2352-2358 (2008). [CrossRef]
  16. K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401-407 (2006). [CrossRef]
  17. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902-1904 (2007). [CrossRef]
  18. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness,” J. Opt. Soc. Am. A 24, 522-529 (2007). [CrossRef]
  19. J. H. Gu, H. Lu, Y. W. Chen, L. Y. Liu, P. Wang, J. M. Ma, and Z. H. Lu, “Enhancement of the sensitivity of surface plasmon resonance biosensor with colloidal gold labeling technique,” Supramol. Sci. 5, 695-698 (1998). [CrossRef]
  20. D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23, 2307-2314(2006). [CrossRef]
  21. P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modeling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators B 22, 175-180(1994). [CrossRef]
  22. L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007). [CrossRef]
  23. X. Y. Yang and D. M. Liu, “Sensitivity enhancement of surface plasmon resonance sensors through planar metallic film closely coupled to nanogratings,” Chin. Opt. Lett. 5, 563-565(2007).
  24. S. J. Yoon and D. Kim, “Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 25, 725-735 (2008). [CrossRef]
  25. D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis,” Appl. Phys. A 89, 407-411 (2007). [CrossRef]
  26. S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606-12612 (2004). [CrossRef]
  27. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472-1478 (2008). [CrossRef]
  28. F. Yang, G. W. Bradberry, and J. R. Sambles, “The study of the optical-properties of obliquely evaporated nickel films using IR surface-plasmons,” Thin Solid Films 196, 35-46(1991). [CrossRef]
  29. Y. P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized surface enhanced raman and absorbance spectra of aligned silver nanorod arrays,” J. Phys. Chem. B 110, 3153-3157 (2006). [CrossRef]
  30. Y. J. Liu and Y. P. Zhao, “Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates,” Phys. Rev. B 78, (2008).
  31. K. Kurihara, K. Nakamura, and K. Suzuki, “Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle,” Sens. Actuators B 86, 49-57 (2002). [CrossRef]
  32. A. Knoesen, M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171-178 (1985). [CrossRef]
  33. C. L. Mitsas and D. I. Siapkas, “Generalized matrix-method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates,” Appl. Opt. 34, 1678-1683 (1995). [CrossRef]
  34. G. B. Smith, “Effective medium theory and angular-dispersion of optical-constants in films with oblique columnar structure,” Opt. Commun. 71, 279-284 (1989). [CrossRef]
  35. G. B. Smith, “Theory of angular selective transmittance in oblique columnar thin-films containing metal and voids,” Appl. Opt. 29, 3685-3693 (1990). [CrossRef]
  36. Y. J. Jen and C. C. Lee, “Reflection and transmission phenomena of waves propagating between an isotropic medium and an arbitrarily oriented anisotropic medium,” Opt. Lett. 26, 190-192 (2001). [CrossRef]
  37. D. Kim and S. J. Yoon, “Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872-880 (2007). [CrossRef]
  38. A. Mendozagalvan, G. Martinez, and J. L. Martinez, “Effective dielectric function modeling of inhomogeneous and anisotropic silver films,” Phys. At. Nucl. 207, 365-371 (1994). [CrossRef]
  39. T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford U. Press, 1999).
  40. D. R. H. Craig and F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  41. A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B 100, 423-431 (2004). [CrossRef]
  42. R. N. Tait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated-films,” Thin Solid Films 226, 196-201 (1993). [CrossRef]
  43. J. Piehler, A. Brecht, and G. Gauglitz, “Affinity detection of low molecular weight analytes,” Anal. Chem. 68, 139-143(1996). [CrossRef]
  44. E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlu, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. USA 105, 7988-7992 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited