OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Raman signature from brain hippocampus could aid Alzheimer’s disease diagnosis

Pu Chen, Aiguo Shen, Wei Zhao, Seong-Joon Baek, Hua Yuan, and Jiming Hu  »View Author Affiliations

Applied Optics, Vol. 48, Issue 24, pp. 4743-4748 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (479 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Micro-Raman spectroscopy (MRS) is used for the first time to our knowledge to investigate brain hippocampus tissue from Alzheimer’s disease (AD) infected rats. In situ Raman analysis of tissue sections provides distinct spectra useful for distinguishing AD from normal state. The biochemical changes of brain hippocampus tissue including the deposit of β-amyloid ( A β ) protein, the increase of cholesterol, and hyperphosphorylated tau are observed through MRS when AD occurs. A more convincing multi- Raman criterion based on single Raman peaks, and further in combination with statistical analysis of the entire Raman spectrum, is found capable of classifying brain hippocampus tissues with different pathological features. This study demonstrates the brain hippocampus is an important candidate for considering the early pathological state of AD, and Raman signatures from the brain hippocampus could aid AD diagnosis. In addition, Raman results undoubtedly confirm simultaneous changes of cholesterol and A β in the progression of AD.

© 2009 Optical Society of America

OCIS Codes
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 20, 2008
Revised Manuscript: June 16, 2009
Manuscript Accepted: July 30, 2009
Published: August 13, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Pu Chen, Aiguo Shen, Wei Zhao, Seong-Joon Baek, Hua Yuan, and Jiming Hu, "Raman signature from brain hippocampus could aid Alzheimer's disease diagnosis," Appl. Opt. 48, 4743-4748 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiol. Rev. 81, 741-766 (2001). [PubMed]
  2. C. D. Sudworth and N. Krasnera, “Raman spectroscopy of Alzheimer's diseased tissue,” Proc. SPIE 5321, 93-101 (2004). [CrossRef]
  3. D. Mungas, W. J. Jagust, B. R. Reed, J. H. Kramer, M. W. Weiner, N. Schuff, D. Norman, W. J. Mack, L. Willis, and H. C. Chui, “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology 57, 2229-2235 (2001).
  4. K. Ishii, F. Willoch, S. Minoshima, A. Drzezga, E. P. Ficaro, D. J. Cross, D. E. Kuhl, and M. Schwaiger, “Statistical brain mapping of F-18-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains,” J. Nucl. Med. 42, 548-557 (2001). [PubMed]
  5. F. J. Turrell and G. Corset, The Raman Effect (Academic, 1996).
  6. J. R. Ferraro, Introductory Raman Spectroscopy (Academic, 1994).
  7. C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777-783 (1995). [CrossRef] [PubMed]
  8. X. F. Ling, Y. Z. Xu, S. F. Weng, W. H. Li, X. U. Zhi, R. M. Hammaker, W. G. Fateley, F. Wang, X. S. Zhou, R. D. Soloway, J. R. Ferraro, and J. G. Wu, “Investigation of normal and malignant tissue samples from the human stomach using Fourier transform Raman spectroscopy,” Appl. Spectrosc. 56, 570-573 (2002). [CrossRef]
  9. A. G. Shen, Y. Ye, X. H. Wang, C. C. Chen, H. B. Zhang, and J. M. Hu, “Raman scattering properties of human pterygium tissue,” J. Biomed. Opt. 10, 024036 (2005). [CrossRef] [PubMed]
  10. K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surfaces-enhance Raman spectroscopy in single living cell using gold nanoparticals,” Appl. Spectrosc. 56, 150-154 (2002). [CrossRef]
  11. J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005). [CrossRef] [PubMed]
  12. J. Dong, C. S. Atwood, V. E. Anderson, S. L. Siedlak, M. A. Smith, G. Perry, and P. R. Carey, “Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence,” Biochemistry 42, 2768-2773(2003). [CrossRef] [PubMed]
  13. H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Coté, “Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2, 55-64 (2007). [CrossRef]
  14. J. L. Lippert, D. Tyminski, and P. J. Desmeules, “Determination of the secondary structure of proteins by laser Raman spectroscopy,” J. Am. Chem. Soc. 98, 7075-7080 (1976). [CrossRef] [PubMed]
  15. R. W. Williams and V. Luzzati, “Estimation of protein secondary structure from the laser Raman amide I spectrum,” J. Mol. Biol. 166, 581-603 (1983). [CrossRef] [PubMed]
  16. A. Mahadevan-Jansen and R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31-70 (1996). [CrossRef]
  17. Y. Zhang, H. L. Li, D. L. Wang, S. J. Liu, and J. Z. Wang, “A transitory activation of protein kinase-A induces a sustained tau hyperphosphorylation at multiple sites in N2a cells and implies a new mechanism in Alzheimer pathology,” J. Neural Transm. 113, 1487-1497 (2006). [CrossRef] [PubMed]
  18. M. J. de Leon, A. Convit, S. De Santi, M. Bobinski, A. E. George, H. M. Wisniewski, H. Rusinek, R. Carroll, and L. A. Saint Louis, “Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease,” Int. Psychogeriatr. 9(Sup S1), 183-190 (1997). [CrossRef] [PubMed]
  19. A. Itoh, A. Nitta, M. Nadai, K. Nishimura, M. Hirose, T. Hasegawa, and T. Nabeshima, “Dysfunction of cholinergic and dopaminergic neuronal systems in β-amyloid protein-infused rats,” J. Neurochem. 66, 1113-1117 (1996). [CrossRef] [PubMed]
  20. Z. W. Cai, F. Xiao, B. Lee, I. A. Paul, and P. G. Rhodes, “Prenatal hypoxia-ischemia alters expression and activity of nitric oxide synthase in the young rat brain and causes learning deficits,” Brain Res. Bull. 49, 359-365 (1999). [CrossRef] [PubMed]
  21. K. Chen, Y. J. Qin, F. Zheng, M. H. Sun, and D. Shi, “Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells,” Opt. Lett. 31, 2015-2017 (2006). [CrossRef] [PubMed]
  22. C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Amsterdam) 130, 1070-1077 (2005).
  23. C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta Part A 61, 1529-1535 (2005). [CrossRef]
  24. J. R. Mourant, K. W. Short, S. Carpenter, and J. P. Freyer, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88, 4274-4288 (2005). [CrossRef] [PubMed]
  25. M. A. Findeis, “The role of amyloid β peptide 42 in Alzheimer's disease,” Pharmacol. Ther. 116, 266-286 (2007). [CrossRef] [PubMed]
  26. M. Gallant, M. Rak, A. Szeghalmi, M. R. Del Bigio, D. Westaway, J. Yang, R. Julian, and K. M. Gough, “Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue,” J. Biol. Chem. 281, 5-8 (2005). [CrossRef] [PubMed]
  27. M. D. Ledesma and C. G. Dotti, “Amyloid excess in Alzheimer's disease: What is cholesterol to be blamed for?,” FEBS Lett. 580, 5525-5532 (2006). [CrossRef] [PubMed]
  28. L. Canevari and J. B. Clark, “Alzheimer's disease and cholesterol: the fat connection,” Neurochem. Res. 32, 739-750 (2007). [CrossRef]
  29. C. D. Sudworth, J. K. J. Archera, and D. Mann, “The potential use of Raman spectroscopy for diagnosis of Alzheimer's disease,” Proc. SPIE 5969, 59691G (2005). [CrossRef]
  30. S. Koljenovic, T. B. Schut, A. Vincent, J. M. Kros, and G. J. Puppels, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77, 7958-7965 (2005). [CrossRef] [PubMed]
  31. P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387, 1643-1648 (2007). [CrossRef]
  32. S. G. Baker, “The central role of receiver operating characteristic (ROC) curves in evaluating tests for the early detection of cancer,” J. Natl. Cancer Inst. 95, 511-515 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited