OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 11 — Oct. 21, 2009

Real-time in situ calibration of an optically trapped probing system

Jingfang Wan, Yanan Huang, Sissy Jhiang, and Chia-Hsiang Menq  »View Author Affiliations


Applied Optics, Vol. 48, Issue 25, pp. 4832-4841 (2009)
http://dx.doi.org/10.1364/AO.48.004832


View Full Text Article

Enhanced HTML    Acrobat PDF (724 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present real-time in situ calibration of an optically trapped probing system. In the probing system, a micro/nanobead is stably trapped around the minimum of the field potential to serve as the measurement probe, whereas the random thermal force tends to destabilize it and causes Brownian motion around the equilibrium. The weighted recursive least-squares algorithm is applied to recursively update the system’s parameters, such as the state transition coefficient, and to estimate specific system response and the unknown variance of the Gaussian white noise in real time according to the probe’s motion. The real-time recursive algorithm was first applied to real-time calibration of measurement sensitivity and trapping stiffness for the case that the local temperature and the damping coefficient of the probe are known. It was then applied to estimate the probe’s local temperature in real time. Two experiments were designed to illustrate the applicability of the real-time calibration method. The experimental results show that the recursive algorithm is able to real-time calibrate the trapping stiffness of the probing system and the measurement sensitivity of the back-focal-plane interferometry employed for position measurement. The experimental results also show that the method can estimate the probe’s local temperature in real time.

© 2009 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(140.7010) Lasers and laser optics : Laser trapping

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 26, 2009
Revised Manuscript: August 3, 2009
Manuscript Accepted: August 5, 2009
Published: August 21, 2009

Virtual Issues
Vol. 4, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Jingfang Wan, Yanan Huang, Sissy Jhiang, and Chia-Hsiang Menq, "Real-time in situ calibration of an optically trapped probing system," Appl. Opt. 48, 4832-4841 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-25-4832


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769-771 (1987). [CrossRef] [PubMed]
  3. L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762-2768 (1994). [CrossRef]
  4. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271, 795-799(1996). [CrossRef] [PubMed]
  5. A. E. Knight, C. Veigel, C. Chambers, and J. E. Molloy, “Analysis of single-molecule mechanical recordings: application to acto-myosin interactions,” Prog. Biophys. Molec. Biol. 77, 45-72 (2001). [CrossRef]
  6. A. L. Stout, “Detection and characterization of individual intermolecular bounds using optical tweezers,” Biophys. J. 80, 2976-2986 (2001). [CrossRef] [PubMed]
  7. T. Scholz, S. M. Altmann, M. Antognozzi, C. Tischer, J. K. Heinrich, and B. Brenner, “Mechanical properties of single myosin molecules probed with the photonic force microscope,” Biophys. J. 88, 360-371 (2005). [CrossRef]
  8. F. Gittes and G. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23, 7-9 (1998). [CrossRef]
  9. A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378-386 (1999). [CrossRef] [PubMed]
  10. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  11. M. E. J. Friese, H. Rubinsztein-Dunlop, N. R. Heckenberg, and E. W. Dearden, “Determination of the force constant of a single-beam gradient trap by measurement of backscattered light,” Appl. Opt. 35, 7112-7116 (1996). [CrossRef] [PubMed]
  12. K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594-612(2004). [CrossRef]
  13. K. Berg-Sorensen, E. J. G. Peterman, T. Weber, C. F. Schmidt, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers II: laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth,” Rev. Sci. Instrum. 77, 063106 (2006). [CrossRef]
  14. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70, 1813-1822 (1996). [CrossRef] [PubMed]
  15. M. Capitano, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73, 1687-1696 (2002). [CrossRef]
  16. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308-1316(2003). [CrossRef] [PubMed]
  17. Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31, 2429-2431 (2006). [CrossRef] [PubMed]
  18. Y. Huang, J. Wan, M.-C. Cheng, Z. Zhang, S. M. Jhiang, and C.-H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107(2009). [CrossRef] [PubMed]
  19. A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197-2210 (2004). [CrossRef]
  20. A. Rohrbach and E. H. K. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91, 5474-5488 (2002). [CrossRef]
  21. S. M. Pandit, Modal and Spectrum Analysis: Data Dependent Systems in State Space (Wiley, 1991).
  22. S. Haykin, Adaptive Filter Theory, 4th ed. (Prentice-Hall, 2002).
  23. Y. S. Touloukian, S. C. Saxena, and P. Hestermans, Viscosity (IFI/Plenum, 1975).
  24. S. F. Tolic-Norrelykke, E. Schaffer, J. Howard, F. S. Pavone, F. Julicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited