OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 12 — Nov. 10, 2009

Enhancement of guided-wave two-photon-excited luminescence response with a photonic-crystal fiber

Ilya V. Fedotov, Andrei B. Fedotov, Lyubov V. Doronina, and Aleksei M. Zheltikov  »View Author Affiliations

Applied Optics, Vol. 48, Issue 28, pp. 5274-5279 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (398 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic-crystal fiber (PCF) is shown to substantially increase the guided-wave luminescent response from molecules excited through two-photon absorption (TPA) by femtosecond near-infrared laser pulses. With only a few nanoliters of TPA-excited molecules filling airholes in a specifically designed PCF, the guided-wave two-photon-excited luminescence (TPL) signal is enhanced by more than 2 orders of magnitude relative to the maximum TPL signal attainable from a cell with the same dye excited and collected by the same PCF. Biophotonic implications of this waveguide TPL-response enhancement include fiber-format solutions for online monitoring of drug delivery and drug activation, interrogation of neural activity, biosensing, endoscopy, and locally controlled singlet oxygen generation in photodynamic therapy.

© 2009 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 26, 2009
Revised Manuscript: July 30, 2009
Manuscript Accepted: August 19, 2009
Published: September 21, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Ilya V. Fedotov, Andrei B. Fedotov, Lyubov V. Doronina, and Aleksei M. Zheltikov, "Enhancement of guided-wave two-photon-excited luminescence response with a photonic-crystal fiber," Appl. Opt. 48, 5274-5279 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990). [CrossRef] [PubMed]
  2. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in biosciences,” Nature Biotechnol. 21, 1369-1377 (2003). [CrossRef]
  3. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods 2, 932-940 (2005). [CrossRef] [PubMed]
  4. J. D. Bhawalkar, N. D. Kumar, C.-F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Lasers Med. Surg. 15, 201-204 (1997).
  5. B. C. Wilson, M. Olivo, and G. Singh, “Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to Photofrin-initiated photodynamic therapy,” Photochem. Photobiol. 65, 166-176 (1997). [CrossRef] [PubMed]
  6. W. G. Fisher, W. P. Partridge, Jr., C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141-155 (1997). [CrossRef] [PubMed]
  7. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 2, 941-950 (2005). [CrossRef] [PubMed]
  8. J. Y. Ye, M. T. Myaing, T. B. Norris, T. Thomas, and J. Baker, Jr., “Biosensing based on two-photon fluorescence measurements through optical fibers,” Opt. Lett. 27, 1412-1414 (2002). [CrossRef]
  9. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003). [CrossRef] [PubMed]
  10. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847-851(2003). [CrossRef] [PubMed]
  11. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854-858(2001). [CrossRef]
  12. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29, 1974-1976 (2004). [CrossRef] [PubMed]
  13. S. Konorov, A. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express 13, 3454-3459 (2005). [CrossRef] [PubMed]
  14. A. M. Zheltikov, “Photonic-crystal fibers for a new generation of light sources and frequency converters,” Phys. Uspekhi 50, 705-727 (2007). [CrossRef]
  15. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, Jr., W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. St. J. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28, 1224-1226(2003). [CrossRef] [PubMed]
  16. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602-2607(1995). [CrossRef] [PubMed]
  17. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002). [CrossRef] [PubMed]
  18. F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004). [CrossRef]
  19. A. M. Zheltikov, “Let there be white light: Supercontinuum generation by ultrashort laser pulses,” Phys. Usp. 49, 605-628 (2006). [CrossRef]
  20. M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802-805 (1994). [CrossRef] [PubMed]
  21. R. Y. Tsien, Breeding Molecules to Spy on Cells, The Harvey Lectures, Series 99 (Wiley, 2005), pp. 77-93.
  22. L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, K. V. Anokhin, A. B. Fedotov, and A. M. Zheltikov, “Enhancement of two-photon-excited luminescence response from brain-tissue-labeling dyes using a wavelength-tunable soliton output of a photonic-crystal fiber,” in Topical Problems of Biophotonics (Institute of Applied Physics, 2009), p. 210.
  23. L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited