OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 12 — Nov. 10, 2009

Use of two-dimensional phase-only filters and compounding for speckle reduction and edge detection in ultrasonic B-scan images

P. M. Shankar  »View Author Affiliations


Applied Optics, Vol. 48, Issue 29, pp. 5589-5597 (2009)
http://dx.doi.org/10.1364/AO.48.005589


View Full Text Article

Enhanced HTML    Acrobat PDF (1449 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase-only filters (POF) are studied for speckle reduction and edge detection in ultrasonic images. A methodology is developed for selecting the filters and compounding the filtered outputs. Studies on four speckled images show that the parametric images of compounded phases highlighted the boundaries. Estimating the heterogeneity index defined as the ratio of the arithmetic to the geometric mean of the magnitudes, the boundaries were also highlighted, providing a second means of detecting boundaries. This technique based on diversity created through a bank of POF reduces the speckle as well as highlights the boundaries of targetlike regions.

© 2009 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(100.2000) Image processing : Digital image processing
(100.5090) Image processing : Phase-only filters
(110.7170) Imaging systems : Ultrasound
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(070.2615) Fourier optics and signal processing : Frequency filtering

ToC Category:
Image Processing

History
Original Manuscript: July 21, 2009
Revised Manuscript: September 21, 2009
Manuscript Accepted: September 22, 2009
Published: October 6, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Citation
P. M. Shankar, "Use of two-dimensional phase-only filters and compounding for speckle reduction and edge detection in ultrasonic B-scan images," Appl. Opt. 48, 5589-5597 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-29-5589


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. B. Burckhardt, “Speckle in ultrasound B-mode scans,” IEEE Trans. Sonics Ultrason. 25, 1-6 (1978). [CrossRef]
  2. T. A. Stavros, D. Thickman, C. L. Rapp, M. A. Dennis, S. H. Parker, and G. A. Sisney, “Solid breast nodules: use of sonography to distinguish between benign and malignant lesions,” Radiology (Oak Brook, Ill.) 196, 123-134 (1995).
  3. D. C. Howlett, N. D. P. Marchbank, and S. M. Allan, “Sonographic assessment of the symptomatic breast--a pictorial review,” J. Diagn. Radiogr. Imag. 5, 3-12 (2003). [CrossRef]
  4. R. G. Dantas and E. T. Costa, “Ultrasound speckle reduction using modified Gabor filters,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 530-538 (2007). [CrossRef]
  5. P. M. Shankar, “Contrast enhancement and phase sensitive boundary detection in ultrasonic speckle using Bessel spatial filters,” IET Image Process. 3, 41-51 (2009). [CrossRef]
  6. J. M. H. du Buff, “Gabor phase in texture estimation,” Signal Process. 21, 221-240 (1990). [CrossRef]
  7. P. Moreno, A. Bernardino, and J. Santos-Victor, “Gabor parameter selection for local feature detection,” presented at the Second Iberian Conference on Pattern Recognition and Image Analysis, Estoril, Portugal, 7-9 June 2005.
  8. C. M. Chen, H. H. S. Lu, and K. C. Han, “A textural approach based on Gabor functions for texture edge detection in ultrasound images,” Ultrasound Med. Biol. 27, 515-534 (2001). [CrossRef] [PubMed]
  9. J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812-816 (1984). [CrossRef] [PubMed]
  10. J. L. Horner and J. R. Leger, “Pattern recognition with binary phase-only filters,” Appl. Opt. 24, 609-611 (1985). [CrossRef] [PubMed]
  11. H. Goto, T. Konishi, and K. Itoh, “Simultaneous amplitude and phase modulation by a discrete phase-only filter,” Opt. Lett. 34, 641-643 (2009). [CrossRef] [PubMed]
  12. J. P. Kirk and A. L. Jones, “Phase-only complex-valued spatial filter,” J. Opt. Soc. Am. 61, 1023-1028 (1971). [CrossRef]
  13. J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29, 11-13 (2004). [CrossRef] [PubMed]
  14. J. A. Bonet, I. Márquez, R. Muller, M. Sobotka, and A. Tritschler, “Phase diversity restoration of sunspot images I. Relations between penumbral and photospheric features,” Astron. Astrophys. 423, 737-744 (2004). [CrossRef]
  15. B. V. K. V. Kumar and Z. Bahri, “Phase-only filters with improved signal to noise ratio,” Appl. Opt. 28, 250-257 (1989). [CrossRef] [PubMed]
  16. B. Bhaduri, N. K. Mohan, M. P. Kothiyal, and R. S. Sirohi, “Use of spatial phase shifting technique in digital speckle pattern interferometry (DSPI) and digital shearography (DS),” Opt. Express 14, 11598-11607 (2006). [CrossRef] [PubMed]
  17. D. G. Brennan, “Linear diversity combining techniques,” Proc. IRE 47, 1075-1102 (1959). [CrossRef]
  18. P. Karpur, P. M. Shankar, J. L. Rose, and V. L. Newhouse, “Split spectrum processing: determination of the available bandwidth for spectral splitting,” Ultrason. 26, 204-209(1988). [CrossRef]
  19. J. R. Sanchez and M. L. Oelze, “An ultrasonic imaging speckle-suppression and contrast-enhancement technique by means of frequency compounding and coded excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1327-1339(2009). [CrossRef] [PubMed]
  20. A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529-541 (1981). [CrossRef]
  21. R. G. Dantas, S. Leeman, E. T. Costa, J. P. Jones, and E. J. Valadares Oliveira, “Phase diversity for speckle reduction,” Proc. SPIE 5035, 414-422 (2003). [CrossRef]
  22. M. K. Simon and M.-S. Alouni, Digital Communication over Fading Channels: A Unified Approach to Performance Analysis (Wiley, 2000). [CrossRef]
  23. P. M. Shankar, “A general statistical model for ultrasonic scattering from tissues,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 727-736 (2000). [CrossRef]
  24. P. M. Shankar, “A compound scattering pdf for the ultrasonic echo envelope and its relationship to K and Nakagami distributions,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 339-343 (2003). [CrossRef] [PubMed]
  25. P. M. Shankar, “A model for ultrasonic scattering from tissues based on K distribution,” Phys. Med. Biol. 40, 1633-1649(1995). [CrossRef] [PubMed]
  26. C. J. Oliver and P. Lombardo, “Simultaneous mean and texture edge detection in SAR clutter,” IEE Proc. Radar Sonar Navig. 143, 391-399 (1996). [CrossRef]
  27. R. Touzi, A. Lopes, and P. Bousquet, “A statistical and geometrical edge detector for SAR images,” IEEE Trans. Geosci. Remote Sens. 26, 764-773 (1988). [CrossRef]
  28. C. J. Oliver, D. Blacknell, and R. G. White, “Optimum edge detection in SAR,” IEE Proc. Radar Sonar Navig. 143, 31-40(1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited