OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 13 — Dec. 2, 2009

Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam

Masaki Michihata, Terutake Hayashi, and Yasuhiro Takaya  »View Author Affiliations

Applied Optics, Vol. 48, Issue 32, pp. 6143-6151 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1150 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The trapping efficiency and stiffness of optical tweezers using radial polarization are evaluated; the ray-tracing method and a proposed measurement method are used for numerical and experimental analyses, respectively. The maximum axial trapping efficiency with radial polarization is 1.84 times that with linear polarization, while the maximum transverse trapping efficiency decreases by 0.58 times. Further, the axial and transverse trapping efficiencies are found to be 1.19 times larger and 0.83 times smaller, respectively, than the values with linear polarization. From the experiments, the axial and transverse stiffness values are 1.2 times larger and 0.8 times smaller, respectively, with radial polarization. Hence, radial polarization enhances the axial trapping properties while reducing the transverse trapping properties.

© 2009 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(230.1040) Optical devices : Acousto-optical devices
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:

Original Manuscript: June 29, 2009
Revised Manuscript: September 28, 2009
Manuscript Accepted: October 7, 2009
Published: November 2, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Masaki Michihata, Terutake Hayashi, and Yasuhiro Takaya, "Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam," Appl. Opt. 48, 6143-6151 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkolm, and S. Chu, “Observation of a single-beam gradient force optical path for dielectric particles,” Opt. Lett. 11, 288-290 (1986). [CrossRef]
  2. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348-352 (1990). [CrossRef]
  3. K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking cell,” Cell 115, 437-447 (2003). [CrossRef]
  4. L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762-2768 (1994). [CrossRef]
  5. E. L. Florin, A. Pralle, J. K. H. Hörber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol. 119, 202-211 (1997). [CrossRef]
  6. M. Michihata, Y. Nagasaka, T. Hayashi, and Y. Takaya, “Probing technique using circular motion of a microsphere controlled by optical pressure for a nanocoordinate measuring machine,” Appl. Opt. 48, 198-205 (2009). [CrossRef]
  7. T. Hariyama, Y. Takaya, and T. Miyoshi, “New mass measurement method of aerosol particle using vibrating probe particle controlled by radiation pressure,” Proc. SPIE 5993, 59930P(2005). [CrossRef]
  8. Q. Zhan, “Efficient extracavity generation of radially and azimuthally polarized beams,” J. Opt. A Pure Appl. Opt. 5, 229-232 (2003). [CrossRef]
  9. S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007). [CrossRef]
  10. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32, 1839-1841 (2007). [CrossRef]
  11. T. A. Nieminen, N. R. Heckenberg, and H. R. Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33, 122-124 (2008). [CrossRef]
  12. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377-3382 (2004). [CrossRef]
  13. T. Wohland, A. Rosin, and E. H. K. Stelzer, “Theoretical determination of the influence of the polarization on forces exerted by optical tweezers,” Optik (Jena) 102, 181-190 (1996).
  14. J. Bai, T. Miyoshi, Y. Takaya, and S. Takahashi, “Computer simulation for laser trapping on micro-particles with arbitrary shapes,” Int. J. Jpn. Soc. Prec. Eng. 33, 363-368 (1999).
  15. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23, 7-9 (1998). [CrossRef]
  16. D. Bonessi, K. Bonin, and T. Walker, “Optical forces on particles of arbitrary shapes and size,” J. Opt. A Pure Appl. Opt. 9, S228-S234 (2007). [CrossRef]
  17. R. C. Gauthier, “Computation of the optical trapping force single an FDTD based technique,” Opt. Express 13, 3707-3718 (2005). [CrossRef]
  18. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992). [CrossRef]
  19. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased vertical trapping efficiency,” J. Mod. Opt. 45, 1943-1949 (1998). [CrossRef]
  20. R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, “Measurements of optical trapping efficiency for micron-sized dielectric particles in various surrounding media,” Opt. Rev. 3, 11-13 (1996). [CrossRef]
  21. K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594-612 (2004). [CrossRef]
  22. M. E. J. Friese, H. Rubinsztein-Dunlop, N. R. Heckenberg, and E. W. Dearden, “Determination of the force constant of a single-beam gradient trap by measurement of backscattering light,” Appl. Opt. 35, 7112-7116 (1996). [CrossRef]
  23. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735-1748 (1994). [CrossRef]
  24. Z. Ding, G. Lai, T. Sakakibara, and S. Shinohara, “Determination of the spring constant of an optical trap by external sinusoidal excitation and lock-in detection,” J. Appl. Phys. 88, 737-741 (2000). [CrossRef]
  25. Y. Takaya, K. Imai, S. Dejima, and T. Miyoshi, “Nano-position sensing using optically motion-controlled microprobe with PSD based on laser trapping technique,” CIRP Annals 54, 467-470 (2005). [CrossRef]
  26. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468-1470 (2007). [CrossRef]
  27. A. R. Zakharian, P. Polynkin, M. Mansuripur, and J. V. Moloney, “Single-beam trapping of micro-beads in polarized light: Numerical simulations,” Opt. Express 14, 3660-3676 (2006). [CrossRef]
  28. Y. Kawata and W. Inami, “Confocal microsphere for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648-6650 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited