OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 13 — Dec. 2, 2009

Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher

Andrew E. Ekpenyong, Carolyn L. Posey, Joy L. Chaput, Anya K. Burkart, Meg M. Marquardt, Timothy J. Smith, and Michael G. Nichols  »View Author Affiliations


Applied Optics, Vol. 48, Issue 32, pp. 6344-6354 (2009)
http://dx.doi.org/10.1364/AO.48.006344


View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical stretcher is a dual-beam trap capable of stretching individual cells. Previous studies have used either ray- or wave-optical models to compute the optical pressure on the surface of a spherical cell. We have extended the ray-optics model to account for focusing by the spherical interface and the effects of multiple internal reflections. Simulation results for red-blood cells (RBCs) show that internal reflections can lead to significant perturbation of the deformation, leading to a systematic error in the determination of cellular elasticity. Calibration studies show excellent agreement between the predicted and measured escape force, and RBC stiffness measurements are consistent with literature values. Measurements of the elasticity of murine osteogenic cells reveal that these cells are approximately 5.4 times stiffer than RBCs.

© 2009 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 9, 2009
Revised Manuscript: September 14, 2009
Manuscript Accepted: October 11, 2009
Published: November 6, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Andrew E. Ekpenyong, Carolyn L. Posey, Joy L. Chaput, Anya K. Burkart, Meg M. Marquardt, Timothy J. Smith, and Michael G. Nichols, "Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher," Appl. Opt. 48, 6344-6354 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-32-6344


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451-5454 (2000). [CrossRef] [PubMed]
  2. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767-784 (2001). [CrossRef] [PubMed]
  3. K. J. Van Vliet, G. Bao, and S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules,” Acta Mater. 51, 5881-5905 (2003). [CrossRef]
  4. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005). [CrossRef] [PubMed]
  5. B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, “High-throughput rheological measurements with an optical stretcher,” Methods Cell Biol. 83, 397-423 (2007). [CrossRef] [PubMed]
  6. R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Kas, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502-516 (2006). [CrossRef] [PubMed]
  7. G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189-194 (1977). [CrossRef]
  8. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiberoptic light-force trap,” Opt. Lett. 18, 1867-1869 (1993). [CrossRef] [PubMed]
  9. J. R. Stephenson, “Computational modeling of the optical stretcher: an evaluation of the stretching force and trap stability for cubic and spherical objects,” Masters thesis (Creighton University, 2002).
  10. A. Yariv and A. Yariv, Optical Electronics in Modern Communications (Oxford University, 1997).
  11. J. R. Stephenson, “Size- and geometry-dependent trapping efficiency of the optical stretcher,” presented at the March Meeting of the American Physics Society (Albuquerque, New Mexico, 23 April 2002).
  12. R. Greenler, Rainbows, Halos, and Glories (Cambridge University, 1980).
  13. P. B. Bareil, Y. L. Sheng, and A. Chiou, “Local stress distribution on the surface of a spherical cell in an optical stretcher,” Opt. Express 14, 12503-12509 (2006). [CrossRef]
  14. A. Ekpenyong, “Hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher,” Masters thesis (Creighton University, 2008).
  15. W. H. Press, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University, 1992).
  16. J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J Biomed. Opt. 10, 064013 (2005). [CrossRef]
  17. N. Ghosh-Choudhury, J. J. Windle, B. A. Koop, M. A. Harris, D. L. Guerrero, J. M. Wozney, G. R. Mundy, and S. E. Harris, “Immortalized murine osteoblasts derived from BMP 2-T-antigen expressing transgenic mice,” Endocrinology 137, 331-339(1996). [CrossRef] [PubMed]
  18. L. F. Bonewald, “Establishment and characterization of an osteocyte-like cell line, MLO-Y4,” J. Bone Miner. Met. 17, 61-65 (1999). [CrossRef]
  19. K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U. S. A. 104, 8287-8292 (2007). [CrossRef] [PubMed]
  20. B. Lincoln, H. M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, and J. Guck, “Deformability-based flow cytometry,” Cytometry A 59, 203-209 (2004). [CrossRef] [PubMed]
  21. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U. S. A. 105, 13730-13735(2008). [CrossRef] [PubMed]
  22. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717-719 (2007). [CrossRef] [PubMed]
  23. F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79, 053808 (2009). [CrossRef]
  24. J. Huff, “Laser induced heating in the optical stretcher,” Masters thesis (Creighton University, 2005).
  25. S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493-15499 (2007). [CrossRef] [PubMed]
  26. G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41, 10-16(2008). [CrossRef] [PubMed]
  27. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689-3698 (2005). [CrossRef] [PubMed]
  28. M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, “Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry,” Lab. Chip 8, 1062-1070(2008). [CrossRef] [PubMed]
  29. S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomater. 1, 15-30 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited