OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 13 — Dec. 2, 2009

Real-time polarization-sensitive optical coherence tomography data processing with parallel computing

Gangjun Liu, Jun Zhang, Lingfeng Yu, Tuqiang Xie, and Zhongping Chen  »View Author Affiliations


Applied Optics, Vol. 48, Issue 32, pp. 6365-6370 (2009)
http://dx.doi.org/10.1364/AO.48.006365


View Full Text Article

Enhanced HTML    Acrobat PDF (646 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With the increase of the A-line speed of optical coherence tomography (OCT) systems, real-time processing of acquired data has become a bottleneck. The shared-memory parallel computing technique is used to process OCT data in real time. The real-time processing power of a quad-core personal computer (PC) is analyzed. It is shown that the quad-core PC could provide real-time OCT data processing ability of more than 80 K A-lines per second. A real-time, fiber-based, swept source polarization-sensitive OCT system with 20 K A-line speed is demonstrated with this technique. The real-time 2D and 3D polarization-sensitive imaging of chicken muscle and pig tendon is also demonstrated.

© 2009 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 9, 2009
Revised Manuscript: September 8, 2009
Manuscript Accepted: October 13, 2009
Published: November 9, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Gangjun Liu, Jun Zhang, Lingfeng Yu, Tuqiang Xie, and Zhongping Chen, "Real-time polarization-sensitive optical coherence tomography data processing with parallel computing," Appl. Opt. 48, 6365-6370 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-32-6365


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903-908 (1992). [CrossRef]
  3. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934-936 (1997). [CrossRef] [PubMed]
  4. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999). [CrossRef]
  5. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355-1357 (2000). [CrossRef]
  6. B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474-479 (2001). [CrossRef] [PubMed]
  7. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11, 782-793 (2003). [CrossRef] [PubMed]
  8. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiberbased multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931-3944 (2005). [CrossRef] [PubMed]
  9. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512-2514 (2004). [CrossRef] [PubMed]
  10. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Optical-fiber-based Mueller optical coherence tomography,” Opt. Lett. 28, 1206-1208 (2003). [CrossRef] [PubMed]
  11. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537-539 (1999). [CrossRef]
  12. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14, 6502-6515(2006). [CrossRef] [PubMed]
  13. J. Zhang, W. Jung, J. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12, 6033-6039 (2004). [CrossRef] [PubMed]
  14. J. Zhang, S. Guo, W. Jung, J. S. Nelson, and Z. Chen, “Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers,” Opt. Express 11, 3262-3270 (2003). [CrossRef] [PubMed]
  15. D. P. Dave´, T. Akkin, and T. E. Milner, “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,” Opt. Lett. 28, 1775-1777 (2003). [CrossRef] [PubMed]
  16. M. K. Al-Qaisi and T. Akkin, “Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing,” Opt. Express 16, 13032(2008). [CrossRef] [PubMed]
  17. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16, 1096-1103 (2008). [CrossRef] [PubMed]
  18. W. Y. Oh, B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Single-detector polarization-sensitive optical frequency domain imaging using high-speed intra A-line polarization modulation,” Opt. Lett. 33, 1330-1332 (2008). [CrossRef] [PubMed]
  19. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892-5906 (2008). [CrossRef] [PubMed]
  20. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14, 6502-6515 (2006). [CrossRef] [PubMed]
  21. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15, 1054-1063(2007). [CrossRef] [PubMed]
  22. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15, 2421-2431 (2007). [CrossRef] [PubMed]
  23. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  24. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  25. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159-3161 (2005). [CrossRef] [PubMed]
  26. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975-2977 (2006). [CrossRef] [PubMed]
  27. N. A. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  28. A. W. Schaefer, J. Joshua Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51, 186-190 (2004). [CrossRef] [PubMed]
  29. S. Yan, D. Piao, Y. Chen, and Q. Zhu, “Digital signal processor-based real-time optical Doppler tomography system,” J. Biomed. Opt. 9, 454-463 (2004). [CrossRef] [PubMed]
  30. J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008). [CrossRef] [PubMed]
  31. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008). [CrossRef] [PubMed]
  32. A. Lafferty, Parallel Computing: Introduction (William Andrew, 1993).
  33. G. Amdahl, “The validity of the single processor approach to achieving large-scale computing capabilities,” in Proceedings of AFIPS Spring Joint Computer Conference (AFIPS, 1967), pp. 483-485.
  34. OpenMP Architecture Review Board, , “The OpenMP API specification for parallel programming,” http://www.openmp.org/.
  35. FFTW version 3.2.1, www.fftw.org.
  36. “General-purpose computation on graphics hardware,”http://www.gpgpu.org.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited