OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 4 — Apr. 1, 2009

Optical waveguide light-mode spectroscopy immunosensors for environmental monitoring

András Székács, Nóra Adányi, Inna Székács, Krisztina Majer-Baranyi, and István Szendrő  »View Author Affiliations


Applied Optics, Vol. 48, Issue 4, pp. B151-B158 (2009)
http://dx.doi.org/10.1364/AO.48.00B151


View Full Text Article

Enhanced HTML    Acrobat PDF (732 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coupling the high specificity of the immunoanalytical reaction with the high sensitivity of optical wave guide light-mode spectroscopy (OWLS) detection gives the possibility to develop immunosensors with in most cases a definitely lower detection limit than traditionally used immunoassays. Measurements were performed on the sensitized surface of optical waveguide grating coupler sensors ( 2400   lines /mm grating). The OWLS technique is based on the precise measurement of the resonance angle of a polarized laser light ( 632.8 nm ), diffracted by a grating and incoupled into a thin waveguide. The effective refractive index, determined from the resonance incoupling angle detected at high accuracy, allows determination of layer thickness and coverage (or mass) of the adsorbed or bound material with ultrahigh sensitivity. OWLS immunosensors were developed as label-free immunosensors with an amino group modified SiO 2 - TiO 2 sensor surface on which the immunoreactants could be anchored. One of the components of the antibody–antigen complex was chemically bound on the sensor surface, allowing noncompetitive or competitive detection of the analytes. To illustrate that the resulting immunosensors are suitable for the determination of small and large molecular weight analytes, OWLS sensor formats were applied for quantitative detection of a herbicide active ingredient trifluralin, a Fusarium mycotoxin zearalenone, and an egg yolk protein of key importance in endocrine regulation, vitellogenin.

© 2009 Optical Society of America

OCIS Codes
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(130.6010) Integrated optics : Sensors
(230.7370) Optical devices : Waveguides
(350.2770) Other areas of optics : Gratings
(130.2755) Integrated optics : Glass waveguides
(280.4788) Remote sensing and sensors : Optical sensing and sensors

History
Original Manuscript: July 31, 2008
Revised Manuscript: November 17, 2008
Manuscript Accepted: November 25, 2008
Published: January 8, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
András Székács, Nóra Adányi, Inna Székács, Krisztina Majer-Baranyi, and István Szendrő, "Optical waveguide light-mode spectroscopy immunosensors for environmental monitoring," Appl. Opt. 48, B151-B158 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-4-B151


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Lukosz and K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption-desorption processes,” IEE Conf. Publ. 227, 152-155 (1983).
  2. J. J. Ramsden, “OWLS: a versatile technique for sensing with bioarrays,” Chimia 53, 67-71 (1999).
  3. K. Tiefenthaler, “Integrated optical couplers as chemical waveguide sensors,” Adv. Biosens. 2, 261-289 (1992).
  4. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699-3710 (2002). [CrossRef] [PubMed]
  5. P. B. Luppa, L. J. Sokoll, and D. W. Chan, “Immunosensors--principles and applications to clinical chemistry,” Clin. Chim. Acta 314, 1-26 (2001). [CrossRef] [PubMed]
  6. G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469, 49-61(2002). [CrossRef]
  7. R. Polzius, F. F. Bier, U. Bilitewski, V. Jäger, and R. D. Schmid, “On-line monitoring of monoclonal antibodies in animal cell culture using a grating coupler,” Biotechnol. Bioeng. 42, 1287-1292 (1993). [CrossRef] [PubMed]
  8. F. F. Bier and R. D. Schmid, “Real time analysis of competitive binding using grating coupler immunosensors for pesticide detection,” Biosens. Bioelectron. 9, 125-130 (1994). [CrossRef]
  9. H. H. Weetall and A. M. Filbert, “Porous glass for affinity chromatography applications,” Methods Enzymol. 34, 59-72(1974). [CrossRef] [PubMed]
  10. H. H. Weetall, “Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports,” Appl. Biochem. Biotechnol. 41, 157-188 (1993). [CrossRef] [PubMed]
  11. A. Székács, E. Maloschik, I. Levkovets, N. Adányi, M. Váradi, and I. Szendrő, “ Immobilization techniques of macromolecules and small analytes onto silica surfaces for the development of optical (OWLS) immunosensors,” FEBS J. 272, 528 (2005).
  12. B. D. Hammock, S. J. Gee, R. O. Harrison, F. Jung, M. H., Goodrow, Q. X. Li, A. Lucas, A. Székács, and K. M. S. Sundaram, “Immunochemical technology in environmental analysis: Addressing critical problems,” in Immunochemical Methods for Environmental Analysis, J. Van Emon and R. O. Mumma, eds., Vol. 442 of ACS Symposium Series (American Chemical Society, 1991), pp. 112-139. [CrossRef]
  13. A. Székács, F. Jung, and B. D. Hammock, “ Chemical modification of haptens--Selective amino group protection by chromophores for an immunoassay for aminotriazoles,” in New Frontiers in Agrochemical Immunoanalysis, D. A. Kurtz, J. H. Skerritt, and L. J. Stanker, eds. (American Organization of Analytical Chemists, 1995), pp. 65-75.
  14. F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996). [CrossRef]
  15. N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371, 21-24 (2001). [CrossRef] [PubMed]
  16. J. Ramsden, “Review of new experimental techniques for investigating random sequantial adsorption,” J. Stat. Phys. 73, 853-877 (1993). [CrossRef]
  17. Gy. Hegedűs, I. Bélai, and A. Székács, “Development of an enzyme-linked immunosorbent assay (ELISA) for the herbicide trifluralin,” Anal. Chim. Acta 421, 121-133 (2000). [CrossRef]
  18. M.-T. Liu, B. P. Ram, P. Hart, and J. J. Pestka, “Indirect enzyme-linked immunosorbent assay for mycotoxin zearalenone,” Appl. Environ. Microbiol. 50, 332-336 (1985). [PubMed]
  19. A. Székács, “Enzyme-linked immunosorbent assay for monitoring the Fusarium toxin zearalenone,” Food Technol. Biotechnol. 36, 105-110 (1998).
  20. H. Fukada, Y. Fujiwara, T. Takahashi, N. Hiramatsu, C. V. Sullivan, and A. Hara, “Carp (Cyprinus carpio) vitellogenin: purification and development of a simultaneous chemiluminescent immunoassay,” Comp. Biochem. Physiol. 134, 615-623 (2003). [CrossRef]
  21. E. Harlow and D. Lane, Antibodies: a Laboratory Manual (Cold Spring Harbor Laboratory, 1988).
  22. N. Harboe and A. Ingild, “ Immunization, isolation of immunoglobulins, estimation of antibody titre,” Scand. J. Immunol. 2, 161-164 (1973). [CrossRef]
  23. A. Székács, N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Development of a non-labeled immunosensor for the herbicide trifluralin via OWLS detection,” Anal. Chim. Acta 487, 31-42 (2003). [CrossRef]
  24. N. Adányi, I. A. Levkovets, S. Rodriguez-Gil, A. Ronald, M.Váradi, and I. Szendrő, “Development of immunosensor based on OWLS technique for determining aflatoxin B1 and ochratoxin A,” Biosens. Bioelectron. 22, 797-802 (2007). [CrossRef]
  25. URL: http://www.microvacuum.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited