OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 4 — Apr. 1, 2009

Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements

Krishnan R. Parameswaran, David I. Rosen, Mark G. Allen, Alan M. Ganz, and Terence H. Risby  »View Author Affiliations


Applied Optics, Vol. 48, Issue 4, pp. B73-B79 (2009)
http://dx.doi.org/10.1364/AO.48.000B73


View Full Text Article

Enhanced HTML    Acrobat PDF (962 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cavity-enhanced tunable diode laser absorption spectroscopy is an attractive method for measuring small concentrations of gaseous species. Ethane is a breath biomarker of lipid peroxidation initiated by reactive oxygen species. A noninvasive means of quickly quantifying oxidative stress status has the potential for broad clinical application. We present a simple, compact system using off-axis integrated cavity output spectroscopy with an interband cascade laser and demonstrate its use in real-time measurements of breath ethane. We demonstrate a detection sensitivity of 0.48 ppb / Hz 1 / 2 .

© 2008 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.0300) Spectroscopy : Spectroscopy

History
Original Manuscript: July 17, 2008
Revised Manuscript: October 24, 2008
Manuscript Accepted: November 1, 2008
Published: December 8, 2008

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Krishnan R. Parameswaran, David I. Rosen, Mark G. Allen, Alan M. Ganz, and Terence H. Risby, "Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements," Appl. Opt. 48, B73-B79 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-4-B73


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. H. Risby, L. Jiang, S. Stoll, D. Ingram, E. Spangler, J. Heim, R. Cutler, G. S. Roth, and J. M. Rifkind, “Breath ethane as a marker of reactive oxygen species during manipulation of diet and oxygen tension in rats,” J. Appl. Physiol. 86, 617-622(1999). [PubMed]
  2. T. H. Risby, “Current status of clinical breath analysis,” in Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring, A. Amman and D. Smith, eds. (World Scientific, 2005), pp. 251-265. [CrossRef]
  3. J. Reid, J. Shewchun, B. K. Garside, and E. A. Ballik, “High sensitivity pollution detection employing tunable diode lasers,” Appl. Opt. 17, 300-307 (1978). [CrossRef] [PubMed]
  4. D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883-889 (1965). [CrossRef]
  5. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285-288 (1942). [CrossRef]
  6. K. D. Skeldon, G. M. Gibson, C. A. Wyse, L. C. McMillan, S. D. Monk, C. Longbottom, and M. J. Padgett, “Development of high-resolution real-time sub-ppb ethane spectroscopy and some pilot studies in life science,” Appl. Opt. 44, 4712-4721(2005). [CrossRef] [PubMed]
  7. Y. A. Bakhirkin, G. Wysocki, M. P. Fraser, R. Q. Yang, and F. K. Tittel, “Sensitive, real-time interband cascade laser based sensor for ethane monitoring,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CFG2.
  8. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347-353 (2000). [CrossRef]
  9. G. von Basum, D. Halmer, P. Hering, M. Mürtz, S. Schiller, F. Müller, A. Popp, and F. Kühnemann, “Parts per trillion sensitivity for ethane in air with an optical parametric oscillator cavity leak-out spectrometer,” Opt. Lett. 29, 797-799(2004). [CrossRef] [PubMed]
  10. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763-3769 (1998). [CrossRef]
  11. A. O'Keefe, J. J. Scherer, and J. B. Paul, “CW Integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343-349 (1999). [CrossRef]
  12. G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.5 μm: new sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45, 9221-9229 (2006). [CrossRef] [PubMed]
  13. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904-4910 (2001). [CrossRef]
  14. L. S. Rothman, L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204(2005). [CrossRef]
  15. R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlattices Microstruct. 17, 77-83 (1995). [CrossRef]
  16. K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer,” Respir. Med. 100, 300-306 (2006). [CrossRef]
  17. K. A. Cope, S. F. Solga, L. K. Hummers, F. M. Wigley, A. M. Diehl, and T. H. Risby, “Abnormal exhaled ethane concentrations in scleroderma,” Biomarkers 11, 70-84 (2006). [CrossRef] [PubMed]
  18. D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer,” Appl. Phys. B. 85, 437-443 (2006). [CrossRef]
  19. M. B. Frish, R. T. Wainner, B. D. Green, M. C. Laderer, and M. G. Allen, “Standoff gas leak detectors based on tunable diode laser absorption spectroscopy,” Proc. SPIE 6010, 60100D (2005). [CrossRef]
  20. D. M. Sonnenfroh, K. R. Parameswaran, and M. G. Allen, “Diode laser-based sensor for high precision measurements of ambient CO2,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (CD) (Optical Society of America, 2008), paper LMA1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited