OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 4 — Apr. 1, 2009

Scanning confocal total internal reflection fluorescence microscopy by using radial polarization in the illumination system

Goro Terakado, Kouyou Watanabe, and Hiroshi Kano  »View Author Affiliations


Applied Optics, Vol. 48, Issue 6, pp. 1114-1118 (2009)
http://dx.doi.org/10.1364/AO.48.001114


View Full Text Article

Enhanced HTML    Acrobat PDF (557 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a scanning total internal reflection fluorescence microscope with improved imaging properties. In the illumination system of the developed microscope, radial polarization is employed to obtain the point spread function with a single and circular peak. By using radial polarization, the confocal detection method, which can reduce the background noise of the image, is effectively applicable in the optical system. The observed image of a fluorescent particle with the size of 200 nm reveals the improvement of the imaging properties.

© 2009 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: July 28, 2008
Revised Manuscript: January 27, 2009
Manuscript Accepted: January 30, 2009
Published: February 13, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Goro Terakado, Kouyou Watanabe, and Hiroshi Kano, "Scanning confocal total internal reflection fluorescence microscopy by using radial polarization in the illumination system," Appl. Opt. 48, 1114-1118 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-6-1114


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol. 16, 13-18 (2005). [CrossRef] [PubMed]
  2. J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, “Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection,” Opt. Lett. 28, 1930-1932 (2003). [CrossRef] [PubMed]
  3. J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt. 43, 1063-1071 (2004). [CrossRef] [PubMed]
  4. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381-1386 (1998). [CrossRef]
  5. H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11-15 (2000). [CrossRef]
  6. K. Watanabe, N. Horiguchi, and H. Kano, “Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination,” Appl. Opt. 46, 4985-4990 (2007). [CrossRef] [PubMed]
  7. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  8. D. G. Hall, “Vector-beam solutions of Maxwell's wave equation,” Opt. Lett. 21, 9-11 (1996). [CrossRef] [PubMed]
  9. P. L. Greene and D. G. Hall, “Properties and diffraction of vector Bessel-Gauss beams,” J. Opt. Soc. Am. A 15, 3020-3027 (1998). [CrossRef]
  10. C. J. R. Sheppard and S. Saghafi, “Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett. 24, 1543-1545 (1999). [CrossRef]
  11. S. Masuda, T. Nose, and S. Sato, “Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2, 211-216 (1995). [CrossRef]
  12. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5253 (2001). [CrossRef] [PubMed]
  13. G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259-264 (2004). [CrossRef]
  14. K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitaiton beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44, L1066-L1068 (2005). [CrossRef]
  15. K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).
  16. Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008). [CrossRef]
  17. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77-87(2000). [CrossRef] [PubMed]
  18. D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9, 490-497 (2001). [PubMed]
  19. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [PubMed]
  20. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322-4327 (2004). [CrossRef] [PubMed]
  21. B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13, 6821-6827 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited