OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 5 — May. 5, 2009

Differential interference contrast microscope using photonic crystals for phase imaging and three-dimensional shape reconstruction

Laurent Fabre, Yoshihiko Inoue, Takafumi Aoki, and Shojiro Kawakami  »View Author Affiliations

Applied Optics, Vol. 48, Issue 7, pp. 1347-1357 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1478 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a differential interference contrast microscope using photonic crystals capable of real-time capture of both phase and amplitude components independently without moving parts. Unlike previous methods using rotating polarizers to discriminate each component, we propose using a special camera equipped with an arrayed polarizer whose instant polarization measurement allows real-time acquisition of the phase gradient information. A two-image algorithm is used to reconstruct the phase two- dimensional distribution of biological samples from the gradient information with a transmission-type microscope. We also talk about deducing a sample’s three-dimensional shape for a reflection-type microscope. The efficiency of the method is demonstrated experimentally.

© 2009 Optical Society of America

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:

Original Manuscript: August 27, 2008
Revised Manuscript: December 19, 2008
Manuscript Accepted: December 23, 2008
Published: February 24, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Laurent Fabre, Yoshihiko Inoue, Takafumi Aoki, and Shojiro Kawakami, "Differential interference contrast microscope using photonic crystals for phase imaging and three-dimensional shape reconstruction," Appl. Opt. 48, 1347-1357 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955). [CrossRef] [PubMed]
  2. H. Ooki, Y. Iwasaki, and J. Iwasaki, “Differential interference contrast microscope with differential detection for optimizing image contrast,” Appl. Opt. 35, 2230-2234 (1996). [CrossRef] [PubMed]
  3. H. Ishiwata, M. Itoh, and T. Yatagai, “A new analysis for extending the measurement range of the retardation-modulated differential interference contrast (RM-DIC) microscope,” Opt. Commun. 281, 1412-1423 (2008). [CrossRef]
  4. M. Shriback and S. Inoue, “Orientation-independant differential interference contrast microscopy,” Appl. Opt. 45, 460-469(2006). [CrossRef]
  5. K. Takita, M. A. Muquit, T. Aoki, and T. Higuchi, “A sub-pixel correspondance search technique for computer vision application,” IEICE Trans. Fundam. E87-A, 1913-1918 (2004).
  6. S. Inoue and K. R. Spring, Video Microscopy, the Fundamentals, 2nd ed. (Plenum, 1997), Chap. 2.6.7. [CrossRef]
  7. S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three dimensional nanostructures by bias sputtering,” Appl. Phys. Lett. 74, 463-465 (1999). [CrossRef]
  8. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63-70 (2002). [CrossRef]
  9. Y. Inoue, T. Kawashima, M. Sasaki, A. Galea, and S. Kawakami, “Highly durable deep ultraviolet polarizers based on auto-cloned photonic crystal,” in Japan Society of Applied Physics 55th Spring Meeting (2008).
  10. S. Kawakami, “Industrial applications of stacked photonic crystals,” Oyo Buturi 77, 508-514 (2008).
  11. S. Kawakami, T. Kawashima, Y. Inoue, Y. Homma, T. Sato, S. Ota, S. Nagashima, and T. Aoki, “Polarization imaging device utilizing photonic crystal polarizer,” J. IEICE J90-C, 17-24 (2007).
  12. T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt. 46, 4963-4967 (2007). [CrossRef] [PubMed]
  13. A. K. Parulski, “Color filters and processing alternatives for one-chip cameras,” IEICE Trans. Electron. Devices ED32, 1381-1389 (1985). [CrossRef]
  14. E. J. Adams, “Interactions between color plane and other image processing functions in electronic photography,” Proc. SPIE 2416, 144-151 (1995). [CrossRef]
  15. E. J. Adams, “Design of practical color filter array interpolation algorithm for digital cameras,” Proc. SPIE 3028, 117-125(1997). [CrossRef]
  16. D. Xu, H. Zhang, Q. Wang, and H. Bao, “Poisson shape interpolation,” Graphical Models 68, 268-281 (2006). [CrossRef]
  17. M. Kahzdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in Eurographics Symposium on Geometry Processing (2006).
  18. K. Takita, T. Aoki, Y. Sasaki, T. Higuchi, and K. Kobayashi, “High-accuracy subpixel image registration based on phase-only correlation,” IEICE Trans. Fundam. E86-A, 1925-1934(2003).
  19. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, 1988), Chap. 19.4.
  20. A. Agrawal, R. Chellappa, and R. Raskar, “An algebraic approach to surface reconstruction from gradient fields,” in Tenth International Conference on Computer Vision (IEEE, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited