OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 5 — May. 5, 2009

Evolution of the optical properties of biomass-burning aerosol during the 2003 southeast Australian bushfires

Majed Radhi, Michael A. Box, Gail P. Box, Pawan Gupta, and Sundar A. Christopher  »View Author Affiliations


Applied Optics, Vol. 48, Issue 9, pp. 1764-1773 (2009)
http://dx.doi.org/10.1364/AO.48.001764


View Full Text Article

Enhanced HTML    Acrobat PDF (1529 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

During January and February 2003, drought conditions led to major bushfires across southeast Australia, causing considerable damage. We have examined aerosol optical depth (AOD) data recorded by a sunphotometer at Wagga Wagga. Although this site lies to the northeast of the fires, periodic changes in wind direction brought smoke plumes over our instrument (AOD in excess of 1.0), sometimes via circuitous routes. By examining the hourly AOD spectra and, specifically, the Ångstrom exponent derived from our two shortest wavelengths, we have observed clear evidence of a shift in the peak radius of the fine mode, most likely as a result of particle coagulation. Selected data sets were inverted to obtain the aerosol size distribution, confirming this conclusion. This was particularly clear on 25 January, when the wind changed during the day so that the afternoon observations were of smoke that had traveled on a more circuitous route to the north of Wagga Wagga before returning.

© 2009 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.5630) Atmospheric and oceanic optics : Radiometry
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 3, 2008
Revised Manuscript: November 12, 2008
Manuscript Accepted: February 25, 2009
Published: March 17, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Majed Radhi, Michael A. Box, Gail P. Box, Pawan Gupta, and Sundar A. Christopher, "Evolution of the optical properties of biomass-burning aerosol during the 2003 southeast Australian bushfires," Appl. Opt. 48, 1764-1773 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-48-9-1764


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Seiler and P. J. Crutzen, “Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning,” Clim. Change 2, 207-247 (1980). [CrossRef]
  2. M. O. Andreae, “Biomass burning: its history, use, and distribution and its impact on environmental quality and global climate,” in Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications, J. S. Levine, ed. (MIT Press, 1991), pp. 3-21.
  3. W. M. Hao and M.-H. Liu, “Spatial and temporal distribution of tropical biomass burning,” Global Biogeochem. Cycles 8, 95-503 (1994). [CrossRef]
  4. C. Liousse, J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman, and H. Cachier, “A global three-dimensional model study of carbonaceous aerosols,” J. Geophys. Res. 101, 19411-19432(1996). [CrossRef]
  5. J. M. Lobert, W. C. Keene, L. A. Logan, and R. Yevich, “Global chlorine emissions from biomass burning: reactive chlorine emissions inventory,” J. Geophys. Res. 104, 8373-8389 (1999). [CrossRef]
  6. G. R. van der Werf, J. T. Randerson, G. J. Collatz, and L. Giglio, “Carbon emissions from fires in tropical and subtropical ecosystems,” Global Change Biol. 9, 547-562 (2003). [CrossRef]
  7. A. Ito and J. E. Penner, “Global estimates of biomass burning emissions based on satellite imagery for the year 2000,” J. Geophys. Res. 109, D14S05 (2004). [CrossRef]
  8. R. M. Mitchell, D. M. O'Brien, and S. K. Campbell, “Characteristics and radiative impact of the aerosol generated by the Canberra firestorm of January 2003,” J. Geophys. Res. 111, D02204 (2006). [CrossRef]
  9. S. A. Christopher, D. V. Kliche, J. Chou, and R. M. Welch, “First estimates of the radiative forcing of aerosols generated from biomass burning using satellite data,” J. Geophys. Res. 101, 21265-21273 (1996). [CrossRef]
  10. J. S. Reid, P. V. Hobbs, R. J. Ferek, D. R. Blake, J. V. Martrins, M. R. Dunlap, and C. Liousse, “Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil ,” J. Geophys. Res. 103, 32059-32080 (1998).
  11. R. M. Mitchell and B. W. Forgan, “Aerosol measurement in the Australian outback: intercomparison of sun photometers,” J. Atmos. Ocean. Technol. 20, 54-66 (2003). [CrossRef]
  12. H. D. Kambezidis and D. G. Kaskaoutis, “Aerosol climatology over four AERONET sites: an overview,” Atmos. Environ. 42, 1892-1906 (2008). [CrossRef]
  13. M. Radhi, M. A. Box, G. P. Box, and B. W. Forgan, “Seasonal cycles of aerosol optical properties at Wagga Wagga and Tennant Creek, Australia,” Clean Air Env. Qual. 40, 40-44(2006).
  14. B. N. Holben, D. Tanré, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. S. Schafer, B. Chatenet, F. Lavenu, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karneli, N. T. O'Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067-12097 (2001). [CrossRef]
  15. J. S. Reid, T. F. Eck, S. A. Christopher, P. V. Hobbs, and B. N. Holben, “Use of the Angstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil,” J. Geophys. Res. 104, 27473-27489 (1999). [CrossRef]
  16. T. F. Eck, B. N. Holben, D. E. Ward, M. M. Mukelabai, O. Dubovik, A. Smirnov, J. S. Schafer, N. C. Hsu, S. J. Piketh, A. Queface, J. Le Roux, J. Swap, and I. Slutsker, “Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements,” J. Geophys. Res. 108, 8477 (2003). [CrossRef]
  17. M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distribution obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153-2167 (1978). [CrossRef]
  18. G. P. Box, M. A. Box, and J. Krucker, “Information content and wavelength selection for multispectral radiometers,” J. Geophys. Res. 101, 19211-19214 (1996). [CrossRef]
  19. R. A. Kotchenruther and P. V. Hobbs, “Humidification factors of aerosols from biomass burning in Brazil,” J. Geophys. Res. 103, 32081-32089 (1998). [CrossRef]
  20. J. Haywood, P. Francis, O. Dubovik, M. Glew, and B. Holben, “Comparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and Sun photometers during SAFARI 2000,” J. Geophys. Res. 108, 8471 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited