OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 8 — Jun. 8, 2010

Tongue fissure extraction and classification using hyperspectral imaging technology

Qingli Li, Yiting Wang, Hongying Liu, Zhen Sun, and Zhi Liu  »View Author Affiliations


Applied Optics, Vol. 49, Issue 11, pp. 2006-2013 (2010)
http://dx.doi.org/10.1364/AO.49.002006


View Full Text Article

Enhanced HTML    Acrobat PDF (509 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tongue fissures, an important feature on the tongue surface, may be pathologically related to some diseases. Most existing tongue fissure extraction methods use tongue images captured by traditional charge coupled device cameras. However, these conventional methods cannot be used for an accurate analysis of the tongue surface due to limited information from the images. To solve this, a hyperspectral tongue imager is used to capture tongue images instead of a digital camera. New algorithms for automatic tongue fissure extraction and classification, based on hyperspectral images, are presented. Both spectral and spatial information of the tongue surface is used to segment the tongue body and extract tongue fissures. Then a classification algorithm based on a hidden Markov model is used to classify tongue fissures into 12 typical categories. Results of the experiment show that the new method has good performance in terms of the classification rates of correctness.

© 2010 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.2960) Image processing : Image analysis
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.4730) Medical optics and biotechnology : Optical pathology

ToC Category:
Image Processing

History
Original Manuscript: October 13, 2009
Revised Manuscript: February 19, 2010
Manuscript Accepted: March 9, 2010
Published: April 1, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Qingli Li, Yiting Wang, Hongying Liu, Zhen Sun, and Zhi Liu, "Tongue fissure extraction and classification using hyperspectral imaging technology," Appl. Opt. 49, 2006-2013 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-49-11-2006


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. B. Ozgursoy, S. K. Ozgursoy, O. Tulunay, O. Kemal, A. Akyol, and G. Dursun, “Melkersson-Rosenthal syndrome revisited as a misdiagnosed disease,” Am. J. Otol. 30, 33-37 (2009). [CrossRef]
  2. K. B. Avraham, M. Schickler, D. Sapoznikov, R. Yarom, and Y. Groner, “Down's syndrome: Abnormal neuromuscular junction in tongue of transgenic mice with elevated levels of human Cu/Zn-superoxide dismutase,” Cell 54, 823-829 (1988). [CrossRef]
  3. M. W. Grushka, V. Ching, and S. Polak, “Retrospective study: prevalence of geographic and fissured tongue in patients with burning mouth syndrome,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endo. 103, 789 (2007). [CrossRef]
  4. M. A. Scheper, N. G. Nikitakis, E. Sarlani, J. J. Sauk, and T. F. Meiller, “Cowden syndrome: report of a case with immunohistochemical analysis and review of the literature,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endo. 101, 625-631 (2006). [CrossRef]
  5. A. Kullaa-Mikkonen, I. Penttilä, R. Kotilainen, and E. Puhakainen, “Haematological and immunological features of patients with fissured tongue syndrome,” Br. J. Oral Maxillofac. Surg. 25, 481-487 (1987). [CrossRef]
  6. J. Guggenheimer, P. A. Moore, K. Rossie, D. Myers, M. B. Mongelluzzo, H. M. Block, R. Weyant, and T. Orchard, “Insulin-dependent diabetes mellitus and oral soft tissue pathologies. I. prevalence and characteristics of non-candidal lesions,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endo. 89, 563-569 (2000). [CrossRef]
  7. I. v. d. Waal, K. P. Schepman, E. H. v. d. Meij, and L. E. Smeele, “Oral leukoplakia: a clinicopathological review,” Oral Oncol. 33, 291-301 (1997). [CrossRef]
  8. L. L. Liu and D. Zhang, “Extracting tongue cracks using the wide line detector,” in Medical Biometrics (Springer, 2007), pp. 49-56.
  9. K. Q. Wang, Z. David, and N. M. Li, Tongue Diagnosis Based on Biometric Pattern Recognition Technology (World Scientific, 2001).
  10. B. Pang, Z. David, and K. Q. Wang, “Tongue image analysis for appendicitis diagnosis,” Inf. Sci. 175, 160-176 (2005). [CrossRef]
  11. C. H. Li and P. C. Yuen, “Tongue image matching using color content,” Patt. Recogn. 35, 407-419 (2002). [CrossRef]
  12. Y. G. Wang, J. Yang, and Y. Zhou, “Region partition and feature matching based color recognition of tongue image,” Patt. Recogn. Lett. 28, 11-19 (2007). [CrossRef]
  13. Y. J. Zheng, J. Yang, Y. Zhou, and Y. Z. Wang, “Color-texture based unsupervised segmentation using JSEG with fuzzy connectedness,” J. Syst. Eng. Electron. 17, 213-219 (2006). [CrossRef]
  14. Q. L. Li and Z. Liu, “Tongue color analysis and discrimination based on hyperspectral images,” Comput. Med. Imaging Graphics 33, 217-221 (2009). [CrossRef]
  15. B. Pang, D. Zhang, and K. Q. Wang, “The bi-elliptical deformable contour and its application to automated tongue segmentation in Chinese medicine,” IEEE Trans. Med. Imaging 24, 946-956 (2005). [CrossRef]
  16. Q. L. Li, Y. Q. Xue, and J. Y. Wang, “Automated tongue segmentation algorithm based on hyperspectral image,” J. Infrared Millim. Waves 26, 77-80 (2007).
  17. Z. Liu, J. Q. Yan, D. Zhang, and Q. L. Li, “Automated tongue segmentation in hyperspectral images for medicine,” Appl. Opt. 46, 8328-8334 (2007). [CrossRef]
  18. B. L. Pham and Y. Cai, “Visualization techniques for tongue analysis in traditional Chinese medicine,” Proc. SPIE 5367, 171-180 (2004). [CrossRef]
  19. L. L. Liu, D. Zhang, A. Kumar, and X. Wu, “Tongue line extraction,” in Proceedings of the 19th International Conference on Pattern Recognition, ICPR 2008 (2008), pp. 1-4.
  20. L. Liu, D. Zhang, and J. You, “Detecting wide lines using isotropic nonlinear filtering,” IEEE Trans. Image Process. 16, 1584-1595 (2007). [CrossRef]
  21. L. Shen, B. Wei, Y. Cai, X. Zhang, Y. Wang, J. Chen, and L. Kong, “Image analysis for tongue characterization,” Chinese J. Electron. 12, 317-323 (2003).
  22. Y. Zhou, L. Shen, and J. Yang, “Feature analysis method of tongue image by Chinese medical diagnosis based on image processing,” Infra. Laser Eng. 31, 490-494 (2002).
  23. B. Pang, D. Zhang, and N. M. Li, “Computerized tongue diagnosis based on Bayesian networks,” IEEE Trans. Biomed. Eng. 51, 1803-1810 (2004). [CrossRef]
  24. T. Vo-Dinh, D. L. Stokes, M. B. Wabuyele, M. E. Martin, J. M. Song, R. Jagannathan, E. Michaud, R. J. Lee, and X. G. Pan, “A hyperspectral imaging system for in vivo optical diagnosis,” IEEE Eng. Med. Biol. Mag. 23, 40-49 (2004). [CrossRef]
  25. Q. L. Li, Y. Q. Xue, and Z. Liu, “A novel system for tongue inspection based on hyperspectral imaging system,” J. Biomed. Eng. 25, 368-371 (2008).
  26. Z. Liu, D. Zhang, J. Q. Yan, Q. L. Li, and Q. L. Tang, “Classification of hyperspectral medical tongue images for tongue diagnosis,” Comput. Med. Imaging Graphics 31, 311 (2007). [CrossRef]
  27. J. Irigoyen and J. Herraez, “Electromagnetic spectrum and color vision,” in Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, ISPA 2003 (2003) pp. 626-629.
  28. Z. Somosy, G. Bognar, G. Thuroczy, and G. J. Koteles, “Biological responses of tight junction to ionizing radiation and electromagnetic field exposition,” Cell. Mol. Biol. (Oxford) 48, 571-575 (2002).
  29. J. L. Jackel, M. S. Goodman, J. E. Baran, W. J. Tomlinson, G. K. Chang, M. Z. Iqbal, G. H. Song, K. Bala, C. A. Brackett, D. A. Smith, R. S. Chakravarthy, R. H. Hobbs, D. J. Fritz, R. W. Ade, and K. M. Kissa, “Acousto-optic tunable filters (AOTFs) for multiwavelength optical cross-connects: crosstalk considerations,” J. Lightwave Technol. 14, 1056-1066 (1996), [CrossRef]
  30. W. Li, C. Zhou, and Z. Zhang, “The segmentation of the body of tongue based on the improved snake algorithm in traditional Chinese medicine,” in Proceedings of the 5th World Congress on Intelligent Control and Automation (2004), pp. 5501-5505.
  31. S. Yu, J. Yang, Y. Wang, and Y. Zhang, “Color active contour models based tongue segmentation in traditional Chinese medicine,” in 2007 1st International Conference on Bioinformatics and Biomedical Engineering, ICBBE (IEEE, 2007), pp. 1065-1068.
  32. H. Zhang, W. Zuo, K. Wang, and D. Zhang, “A snake-based approach to automated segmentation of tongue image using polar edge detector,” Int. J. Imaging Syst. Technol. 16, 103-112 (2006). [CrossRef]
  33. H. Ren and C. Chang, “Target-constrained interference-minimized approach to subpixel target detection for hyperspectral images,” Opt. Eng. 39, 3138-3145 (2000). [CrossRef]
  34. T.-L. Sun, “A detection algorithm for road feature extraction using EO-1 hyperspectral images,” in Proceedings of the 37th Annual 2003 International Carnahan Conference on Security Technology (IEEE, 2003), pp. 87-95.
  35. D. H. Ballard and C. M. Brown, Computer Vision (Prentice Hall, 1982).
  36. Y. He and A. Kundu, “2-D shape classification using hidden markov model,” IEEE Trans. Pattern Anal. Machine Intell. 13, 1172-1184 (1991). [CrossRef]
  37. N. Thakoor, J. Gao, and S. Jung, “Hidden Markov model-based weighted likelihood discriminant for 2-D shape classification,” IEEE Trans. Image Process. 16, 2707-2719 (2007). [CrossRef]
  38. S. Katagiri, B.-H. Juang, and C.-H. Lee, “Pattern recognition using a family of design algorithms based upon the generalized probabilistic descent method,” Proc. IEEE 86, 2345-2373 (1998). [CrossRef]
  39. S. Katagiri, C.-H. Lee, and B.-H. Juang, “New discriminative training algorithms based on the generalized probabilistic descent method,” in Proceedings of the 1991 IEEE Workshop on Neural Networks for Signal Processing (IEEE, 1991), pp. 299-308.
  40. J. Cai and Z.-Q. Liu, “Hidden Markov models with spectral features for 2-D shape recognition,” IEEE Trans. Pattern Anal. Machine Intell. 23, 1454-1458 (2001). [CrossRef]
  41. M. Bicego and V. Murino, “Investigating hidden Markov models' capabilities in 2-D shape classification,” IEEE Trans. Pattern Anal. Machine Intell. 26, 281-286 (2004). [CrossRef]
  42. R. L. Ornberg, B. M. Woerner, and D. A. Edwards, “Analysis of stained objects in histological sections by spectral imaging and differential absorption,” J. Histochem. Cytochem. 47, 1307-1331 (1999).
  43. S. Wang, P. Wang, and H. Wang, “Tongue texture and hepatocirrhosis,” J. Gansu College of TCM 18, 36-38 (2001).
  44. C.-C. Chiu, “A novel approach based on computerized image analysis for traditional Chinese medical diagnosis of the tongue,” Comput. Meth. Prog. Biomed. 61, 77-89 (2000). [CrossRef]
  45. S. Lukmana, Y. Heb, and S.-C. Huic, “Computational methods for traditional Chinese medicine: a survey,” Comput. Meth. Prog. Biomed. 88, 283-294 (2007). [CrossRef]
  46. C.-C. Chiu, H.-H. Chang, and C.-H. Yang, “Objective auscultation for traditional Chinese medical diagnosis using novel acoustic parameters,” Comput. Meth. Prog. Biomed. 62, 99-107 (2000). [CrossRef]
  47. F. Melgani and L. Bruzzone, “Support vector machines for classification of hyperspectral remote-sensing images,” in Proceedings of the Geoscience and Remote Sensing Symposium, 2002, IGARSS'02 (2002), pp. 24-28.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited