OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Evaluation of techniques to model bend loss in multimode fibers for endoscopic application

Jessica Eisenstein, Peter Y. Wong, and Caroline G. L. Cao  »View Author Affiliations

Applied Optics, Vol. 49, Issue 12, pp. 2220-2231 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (545 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bend loss from optical fibers can have positive applications, which need to be characterized and related to fiber curvature in a systematic approach to be useful. One potential application for optical fibers is a shape sensor for tracking flexible bodies in remote access environments, such as in endoscopy or boroscopy. We conducted a review of bend-loss characterization and evaluated several methods for characterizing bend loss in multimode optical fibers for an endoscopic shape-tracking application. Specifically, closed-form equation-based methods and numerical simulations were examined. Beam propagation method (BPM) simulations were determined to be the most applicable characterization tool. Results from simulations using BPM software were compared to experimentally obtained data. BPM simulation was sufficiently accurate for modeling 50 μm fibers but impractical for larger, multimode fibers.

© 2010 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(080.1510) Geometric optics : Propagation methods
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: October 27, 2009
Revised Manuscript: February 28, 2010
Manuscript Accepted: March 19, 2010
Published: April 13, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Jessica Eisenstein, Peter Y. Wong, and Caroline G. L. Cao, "Evaluation of techniques to model bend loss in multimode fibers for endoscopic application," Appl. Opt. 49, 2220-2231 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Hecht, Understanding Fiber Optics (Pearson Education, 2006).
  2. C. G. L. Cao, P. Y. Wong, L. Lilge, R. M. Gavalis, H. Xing, and N. Zamarripa, “Advanced shape tracking to improve flexible endoscopic diagnostics,” Proc. SPIE 6935, 693522 (2008). [CrossRef]
  3. A. A. P. Boechat, D. Su, D. R. Hall, and J. D. C. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321-327 (1991). [CrossRef] [PubMed]
  4. D. Gloge, “Bending loss in multimode fibers with graded and ungraded core index,” Appl. Opt. 11, 2506-2513 (1972). [CrossRef] [PubMed]
  5. G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of bending losses on cladding thickness in plastic optical fibers,” Appl. Opt. 42, 997-1002 (2003). [CrossRef] [PubMed]
  6. E. Papagiakoumou, D. N. Papadopoulos, N. Anastasopoulou, and A. A. Serafetinides, “Comparative evaluation of HP oxide glass fibers for Q-switched and free-running Er:YAG laser beam propagation,” Opt. Commun. 220, 151-160 (2003). [CrossRef]
  7. N. Anastasopoulou, C. Ziolek, A. A. Serafetinides, and H. Lubatschowski, “Q-switched Er:YAG radiation transmission through fluoride glass fibers and dielectric-coated metallic hollow waveguides,” Opt. Commun. 186, 167-171 (2000). [CrossRef]
  8. A. T. Augousti, F. X. Maletras, and J. Mason, “The use of a figure-of-eight coil for fibre optic respiratory plethysmography: geometrical analysis and experimental characterisation,” Opt. Fiber Technol. 11, 346-360 (2005). [CrossRef]
  9. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66, 216-220 (1976). [CrossRef]
  10. H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544-551 (1992). [CrossRef]
  11. K. Okamoto, “Single-polarization operation in highly birefringent optical fibers,” Appl. Opt. 23, 2638-2642 (1984). [CrossRef] [PubMed]
  12. A. Harris and P. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4, 34-40 (1986). [CrossRef]
  13. M. Miyagi and G. L. Yip, “Mode conversion and radiation losses in a step-index optical fibre due to bending,” Opt. Quantum Electron. 9, 51-60 (1977). [CrossRef]
  14. C. Vassallo, “Scalar-field theory and 2-D ray theory for bent single-mode weakly guiding optical fibers,” J. Lightwave Technol. 3, 416-423 (1985). [CrossRef]
  15. L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997). [CrossRef]
  16. R. W. Smink, B. P. de Hon, and A. G. Tijhuis, “Bending loss in optical fibers--a full-wave approach,” J. Opt. Soc. Am. B 24, 2610-2618 (2007). [CrossRef]
  17. G. Aldabaldetreku, J. Zubia, G. Durana, and J. Arrue, “Power transmission coefficients for multi-step index optical fibres,” Opt. Express 14, 1413-1429 (2006). [CrossRef] [PubMed]
  18. Y. Chen, “Power losses in bent and elongated polymer optical fibers,” Appl. Opt. 46, 4570-4578 (2007). [CrossRef] [PubMed]
  19. A. Banerjee, S. Mukherjee, R. K. Verma, B. Jana, T. K. Khan, M. Chakroborty, R. Das, S. Biswas, A. Saxena, V. Singh, R. M. Hallen, R. S. Rajput, P. Tewari, S. Kumar, V. Saxena, A. K. Ghosh, J. John, and P. Gupta-Bhaya, “Fiber optic sensing of liquid refractive index,” Sens. Actuators B 123, 594-605(2007). [CrossRef]
  20. M. S. Kovacevic and D. Nikezic, “Influence of bending on power distribution in step-index plastic optical fibers and the calculation of bending loss,” Appl. Opt. 45, 6675-6681(2006). [CrossRef] [PubMed]
  21. V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15, 990-997 (1997). [CrossRef]
  22. BeamPROP (RSoft Incorporated, 2008).
  23. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, 1972).
  24. I. Kiyat, A. Aydinli, and N. Dagli, “High-Q silicon-on-insulator optical rib waveguide racetrack resonators,” Opt. Express 13, 1900-1905 (2005). [CrossRef] [PubMed]
  25. C.-Y. Huang, W.-C. Wang, W.-J. Wu, and W. R. Ledoux, “Composite optical bend loss sensor for pressure and shear measurement,” IEEE Sens. J. 7, 1554-1565 (2007). [CrossRef]
  26. Lumerical Solutions, “MODE Solutions,” http://www.lumerical.com/mode.php.
  27. J. Van Erps, C. Debaes, T. Nasilowski, J. Watté, J. Wojcik, and H. Thienpont, “Design and tolerance analysis of a low bending loss hole-assisted fiber using statistical design methodology,” Opt. Express 16, 5061-5074 (2008). [CrossRef] [PubMed]
  28. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150-162(2000). [CrossRef]
  29. H. A. Jones-Bey, “Choosing software: different design paths lead to different solutions, part II,” http://www.optoiq.com/index/display/article-display/245100/articles/laser-focus-world/volume-42/issue-1/columns/software-computing/choosing-softwaredifferent-design-paths-lead-to-different-solutions-part-ii.html.
  30. Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335-1339 (1990). [CrossRef]
  31. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899-909 (2007). [CrossRef]
  32. R. Scarmozzino and R. M. Osgood, “Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A 8, 724-731 (1991). [CrossRef]
  33. Y. Y. Lu, “Some techniques for computing wave propagation in optical waveguides,” Commun. Comput. Phys 1, 1056-1075(2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited