OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Fabrication and optical characterization of microstructures in poly(methylmethacrylate) and poly(dimethylsiloxane) using femto second pulses for photonic and microfluidic applications

Deepak L. N. Kallepalli, Narayana Rao Desai, and Venugopal Rao Soma  »View Author Affiliations


Applied Optics, Vol. 49, Issue 13, pp. 2475-2489 (2010)
http://dx.doi.org/10.1364/AO.49.002475


View Full Text Article

Enhanced HTML    Acrobat PDF (2867 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We fabricated several microstructures, such as buried gratings, surface gratings, surface microcraters, and microchannels, in bulk poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) using the femtosecond (fs) direct writing technique. A methodical study of the diffraction efficiency (DE) of the achieved gratings was performed as a function of scanning speed, energy, and focal spot size in both PMMA and PDMS. An optimized set of writing parameters has been identified for achieving efficient gratings in both cases. The highest DE recorded in a PDMS grating was 10 % and 34 % in a PMMA grating obtained with an 0.65 NA ( 40 X ) objective with a single scan. Spectroscopic techniques, including Raman, UV-visible, electron spin resonance (ESR), and physical techniques, such as laser confocal and scanning electron microscopy (SEM), were employed to examine the fs laser-modified regions in an attempt to understand the mechanism responsible for physical changes at the focal volume. Raman spectra collected from the modified regions of PMMA indicated bond softening or stress-related mechanisms responsible for structural changes. We have also observed emission from the fs-modified regions of PMMA and PDMS. An ESR spectrum, recorded a few days after irradiation, from the fs laser-modified regions in PMMA did not reveal any signature of free radicals. However, fs-modified PDMS regions exhibited a single peak in the ESR signal. The probable rationale for the behavior of the ESR spectra in PMMA and PDMS are discussed in the light of free radical formation after fs irradiation. Microchannels within the bulk and surface of PMMA were achieved as well. Microcraters on the surfaces of PMMA and PDMS were also accomplished, and the variation of structure properties with diverse writing conditions has been studied.

© 2010 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.3120) Integrated optics : Integrated optics devices
(220.4000) Optical design and fabrication : Microstructure fabrication
(300.6450) Spectroscopy : Spectroscopy, Raman

History
Original Manuscript: February 10, 2010
Revised Manuscript: March 28, 2010
Manuscript Accepted: March 29, 2010
Published: April 23, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Deepak L. N. Kallepalli, Narayana Rao Desai, and Venugopal Rao Soma, "Fabrication and optical characterization of microstructures in poly(methylmethacrylate) and poly(dimethylsiloxane) using femtosecond pulses for photonic and microfluidic applications," Appl. Opt. 49, 2475-2489 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-49-13-2475


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Becker and C. Gärtner, “Polymer microfabrication technologies for microfluidic systems,” Anal. Bioanal. Chem. 390, 89–111 (2008). [CrossRef]
  2. Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999). [CrossRef]
  3. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196(2005). [CrossRef]
  4. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Phot. 2, 219–225 (2008). [CrossRef]
  5. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009). [CrossRef]
  6. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003). [CrossRef]
  7. S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008). [CrossRef]
  8. M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum. Electron. 14, 1370–1381 (2008). [CrossRef]
  9. J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008). [CrossRef]
  10. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009). [CrossRef]
  11. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025(1996). [CrossRef]
  12. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999). [CrossRef]
  13. Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009). [CrossRef]
  14. H. Tang, H. Jiu, B. Jiang, J. Cai, H. Xing, Q. Zhang, W. Huang, and A. Xia, “Three-dimensional optical storage recording by microexplosion in a doped PMMA polymer,” Proc. SPIE 5643, 258–263 (2005). [CrossRef]
  15. D. A. Higgins, T. A. Everett, A. F. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methyl methacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006). [CrossRef]
  16. P. J. Scully, D. Jones, and D. A. Jaroszynski, “Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings,” J. Opt. A: Pure Appl. Opt. 5, S92–S96 (2003). [CrossRef]
  17. C. Wochnowski, Y. Cheng, K. Meteva, K. Sugioka, K. Midorikawa, and S. Metev, “Femtosecond-laser induced formation of grating structures in planar polymer substrates,” J. Opt. A: Pure Appl. Opt. 7, 493–501 (2005). [CrossRef]
  18. A. Baum, P. J. Scully, M. Basanta, C. L. P. Thomas, P. R. Fielden, N. J. Goddard, W. Perrie, and P. R. Chalker, “Photochemistry of refractive index structures in poly (methyl methacrylate) by femtosecond laser irradiation,” Opt. Lett. 32, 190–192 (2007). [CrossRef]
  19. A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, “Pulse-duration dependency of femtosecond laser refractive index modification in poly (methyl methacrylate),” Opt. Lett. 33, 651–653 (2008). [CrossRef]
  20. S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing DE by heating phase gratings formed by femtosecond laser irradiation in poly (methyl methacrylate),” Appl. Phys. Lett. 94, 241122 (2009). [CrossRef]
  21. S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structures induced by irradiation of femtosecond laser pulse in polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 537–544(2002). [CrossRef]
  22. S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 2800–2806 (2002). [CrossRef]
  23. W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765–L767 (2006). [CrossRef]
  24. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840–1842 (2004). [CrossRef]
  25. K. Wang, D. Klimov, and Z. Kolber, “Waveguide fabrication in PMMA using a modified cavity femtosecond oscillator,” Proc. SPIE 6766, 67660Q (2007). [CrossRef]
  26. K. Ohta, M. Kamata, M. Obara, and N. Sawanobori, “Optical waveguide fabrication in new glasses and PMMA with temporally tailored ultrashort laser,” Proc. SPIE 5340, 172 (2004). [CrossRef]
  27. C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16, 200–206 (2008). [CrossRef]
  28. G. Zhou, M. J. Ventura, M. R. Vanner, and M. Gu, “Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material,” Opt. Lett. 29, 2240–2242 (2004). [CrossRef]
  29. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824–1826 (2002). [CrossRef]
  30. D. F. Farson, H. W. Choi, C. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluidic channels in poly (methyl methacrylate),” J. Laser Appl. 18, 210–215 (2006). [CrossRef]
  31. M. Haiducu, M. Rahbar, I. G. Foulds, R. W. Johnstone, D. Sameoto, and M. Parameswaran, “Deep-UV patterning of commercial grade PMMA for low-cost, large-scale microfluidics,” J. Micromech. Microeng. 18, 115029–115035 (2008). [CrossRef]
  32. Y. V. White, M. Parrish, X. Li, L. M. Davis, and W. Hofmeister, “Femtosecond micro- and nano-machining of materials for microfluidic applications,” Proc. SPIE 7039, 70390J (2008). [CrossRef]
  33. D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44, 051105(2005). [CrossRef]
  34. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005). [CrossRef]
  35. S. Juodkazis, K. Yamasaki, A. Marcinkevicius, V. Mizeikis, S. Matsuo, H. Misawa, and T. Lippert, “Microstructuring of silica and polymethylmethacrylate glasses by femtosecond irradiation for MEMS applications,” Mater. Res. Soc. Symp. Proc. 687, B5.25 (2002).
  36. E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation threshold for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002). [CrossRef]
  37. J. Kruger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” Adv. Polym. Sci. 168, 247–289 (2004). [CrossRef]
  38. W. Watanabe, “Femtosecond filamentary modifications in bulk polymer materials,” Laser Phys. 19, 342–345 (2009). [CrossRef]
  39. H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92, 091120 (2008). [CrossRef]
  40. H. Mochizuki, W. Watanabe, Y. Ozeki, K. Itoh, K. Matsuda, and S. Hirono, “Fabrication of diffractive optical elements inside polymers by femtosecond laser irradiation,” Thin Solid Films 518, 714–718 (2009). [CrossRef]
  41. S. Baudach, J. Kruger, and W. Kautek, “Femtosecond laser processing of soft materials,” Rev. Laser Eng. 29, 705–709(2001).
  42. N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103, 519–552 (2003). [CrossRef]
  43. M. Prasad, P. F. Conforti, and B. J. Garrison, “On the role of chemical reactions in initiating ultraviolet laser ablation in poly(methyl methacrylate),” J. Appl. Phys. 101, 103113 (2007). [CrossRef]
  44. L. Torrisi, A. Lorusso, V. Nassisi, and A. Picciotto, “Characterization of laser ablation of polymethylmethacrylate at different laser wavelengths,” Radiat. Eff. Defects Solids 163, 179–187(2008). [CrossRef]
  45. N. Bityurin, “Studies on laser ablation of polymers,” Annu. Rep. Prog. Chem. Sect. C 101, 216–247 (2005). [CrossRef]
  46. H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009). [CrossRef]
  47. A. Baum, P. J. Scully, W. Perrie, D. Liu, and V. Lucarini, “Mechanisms of femtosecond laser-induced refractive index modification of poly(methyl methacrylate),” J. Opt. Soc. Am. B 27, 107–111 (2010). [CrossRef]
  48. C. G. Khan Malek, “Laser processing for bio-microfluidics applications (part I),” Anal. Bioanal. Chem. 385, 1351–1361(2006). [CrossRef]
  49. C. G. Khan Malek, “Laser processing for bio-microfluidics applications (part II),” Anal. Bioanal. Chem. 385, 1362–1369 (2006). [CrossRef]
  50. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007). [CrossRef]
  51. J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002). [CrossRef]
  52. L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express 16, 21914–21921 (2008). [CrossRef]
  53. L. Ding, R. I. Blackwell, J. F. Kunzler, and W. H. Knox, “Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers,” Appl. Opt. 47, 3100–3108 (2008). [CrossRef]
  54. J. Si, Z. Meng, S. Kanehira, J. Qiu, B. Hua, and K. Hirao, “Multiphoton-induced periodic microstructures inside bulk azodye-doped polymers by multibeam laser interference,” Chem. Phys. Lett. 399, 276–279 (2004). [CrossRef]
  55. J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002). [CrossRef]
  56. T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005). [CrossRef]
  57. S. Demming, A. Llobera, R. Wilke, and S. Büttgenbach, “Single and multiple internal reflection poly(dimethylsiloxane) absorbance-based biosensors,” Sens. Actuators B: Chem. 139, 166–173 (2009). [CrossRef]
  58. S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24, 3563–3576 (2003). [CrossRef]
  59. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21, 27–40 (2000). [CrossRef]
  60. A. C. Siegel, D. A. Bruzewicz, W. B. Weibel, and G. M. Whitesides, “Microsolidics: fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane),” Adv. Mater. 19, 727–733(2007). [CrossRef]
  61. T. O. Yoon, H. J. Shin, S. C. Jeoung, and Y-II. Park, “Formation of superhydrophobic poly(dimethylsiloxane) by ultrafast laser-induced surface modification,” Opt. Express 16, 12715–12725 (2008). [CrossRef]
  62. D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. M. Whitesides, “Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003). [CrossRef]
  63. S. Chung, J. H. Lee, M.-W. Moon, J. Han, and R. D. Kamm, “Non-lithographic wrinkle nanochannels for protein preconcentration,” Adv. Mater. 20, 3011–3016 (2008). [CrossRef]
  64. S.-H. Cho, W.-S. Chang, K.-R. Kim, and J. W. Hong, “Femtosecond laser embedded grating micromachining of flexible PDMS plates,” Opt. Commun. 282, 1317–1321 (2009). [CrossRef]
  65. K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, M. Ferrari, and D. Narayana Rao, “Optical characterization of micro-structures in silicate, FOTURAN™ and tellurite glasses inscribed by femtosecond laser direct writing,” Opt. Commun. 282, 4537–4542 (2009). [CrossRef]
  66. K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009). [CrossRef]
  67. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001). [CrossRef]
  68. A. Carrington and G. Stein, “Free radical formation and oxygen effect in irradiated polymethylmethacrylate,” Nature 193, 976 (1962). [CrossRef]
  69. H. Y. Kaptan and O. Guven, “Effect of γ-irradiation dose for the oxygen diffusion into polymers,” J. Appl. Polym. Sci. 64, 1291–1294 (1997). [CrossRef]
  70. H. Y. Kaptan and L. Tatar, “An electron spin resonance study of mechanical fracture of poly(methyl methacrylate),” J. Appl. Polym. Sci. 65, 1161–1167 (1997). [CrossRef]
  71. F. Szocs, “Free radicals in x-ray irradiated poly (methylmethacrylate) from the point of view of ESR dosimetry,” Chem. Papers 53, 137–139 (1999).
  72. M. Velter-Stefanescu, O. G. Duliua, and N. Preda, “On the relaxation mechanisms of some radiation induced free radicals in polymers,” J. Optoelectron. Advanced Mater. 7, 985–989(2005).
  73. R. E. Samad, L. C. Courrol, A. B. Lugão, A. Z. de Freitas, and N. D. V. Junior, “Production of color centers in PMMA by ultrashort laser pulses,” Radiat. Phys. Chem. 79, 355–357(2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited