OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Laser-induced breakdown spectroscopy used to detect endophyte-mediated accumulation of metals by tall fescue

Madhavi Z. Martin, Arthur J. Stewart, Kimberley D. Gwinn, and John C. Waller  »View Author Affiliations


Applied Optics, Vol. 49, Issue 13, pp. C161-C167 (2010)
http://dx.doi.org/10.1364/AO.49.00C161


View Full Text Article

Enhanced HTML    Acrobat PDF (353 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced breakdown spectroscopy (LIBS) was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected ( E + ) and endophyte-free ( E ) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by inductively coupled plasma (ICP) mass spectrometry (MS). Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni, and Zn) were measured by both techniques at concentrations great enough for a reliable comparison. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cd concentrations in the plants were below levels typically achieved using ICP MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.

© 2010 Optical Society of America

OCIS Codes
(300.2140) Spectroscopy : Emission
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

History
Original Manuscript: October 7, 2009
Revised Manuscript: February 12, 2010
Manuscript Accepted: February 17, 2010
Published: March 17, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Madhavi Z. Martin, Arthur J. Stewart, Kimberley D. Gwinn, and John C. Waller, "Laser-induced breakdown spectroscopy used to detect endophyte-mediated accumulation of metals by tall fescue," Appl. Opt. 49, C161-C167 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-49-13-C161


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Rodriguez, J. F. White, Jr., A. E. Arnold, and R. S. Redmon, “Fungal endophytes: diversity and functional roles,” New Phytol. 182, 314-330 (2009). [CrossRef] [PubMed]
  2. K. Clay, “The ecology and evolution of endophtyes,” Agric. Ecosyst. Environ. 44, 39-64 (1993). [CrossRef]
  3. D. P. Malinowski, G. A. Alloush, and D. P. Belesky, “Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue,” Plant Soil 227, 115-126 (2000). [CrossRef]
  4. K. Groppe, T. Steinger, B. Schmid, B. Baur, and T. Boller, “Effect of habitat fragmentation on choke disease (Epichloe bromicola) in the grass Bromus erectus,” J. Ecol. 89, 247-255(2001). [CrossRef]
  5. R. S. Redman, K. B. Sheehan, R. G. Stout, R. J. Rodriquez, and J. M. Henson, “Thermotolerance generated by plant/fungal symbiosis,” Science 298, 1581 (2002). [CrossRef] [PubMed]
  6. C. A. Kimmons, K. D. Gwinn, and E. C. Bernard, “Nematode reproduction on endophyteinfected and endophyte-free tall fescue,” Plant disease 74, 757-761 (1990). [CrossRef]
  7. K. D. Gwinn and A. M. Gavin, “Relationship between endophyte infestation level of tall fescue seed lots and Rhizoctonia zeae seedling disease,” Plant disease 76, 911-914 (1992). [CrossRef]
  8. K. Saikkonen, M. Helander, S. H. Faeth, F. Schulthess, and D. Wilson, “Endophyte-grassherbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations,” Oecologia 121, 411-420 (1999). [CrossRef]
  9. M. H. Rahman and S. Saiga, “Endophytic fungi (Neotyphodium coenophialum) affect the growth and mineral uptake, transport and efficiency ratios in tall fescue (Festuca arundinacea),” Plant Soil 272, 163-171 (2005). [CrossRef]
  10. A. B. Coley, H. A. Fribroug, M. R. Pelton, and K. D. Gwinn, “Effects of tall fescue infestation on relative abundance of small mammals,” J. Environ. Qual. 24, 472-475 (1995). [CrossRef]
  11. D. P. Malinowski and D. P. Belesky, “Tall fescue aluminum tolerance is affected by Neotyphodium coenophialum endophyte,” J. Plant Nutrition 22, 1335-1349 (1999). [CrossRef]
  12. F. Monnet, N. Vaillant, A. Hitmi, A. Coudret, and H. Sallanon, “Endophytic Neotyphodium lolii induced tolerance to Zn stress in Lolium perenne,” Physiol. Plantarum 113, 557-563(2001). [CrossRef]
  13. D. E. Zaurov, S. Bonos, J. A. Murphy, M. Richardson, and F. C. Belanger, “Endophyte infection can contribute to aluminum tolerance in fine fescues,” Crop Sci. 41, 1981-1984 (2001). [CrossRef]
  14. S. B. Dennis, V. G. Allen, K. E. Saker, J. P. Fontenot, J. Y. M. Ayad, and C. P. Brown, “Influence of Neotyphodium coenophialum on copper concentration in tall fescue,” J. Anim. Sci. 76, 2687-2693 (1998). [PubMed]
  15. M. Z. Martin and M. D. Cheng, “The detection of chromium aerosol using time-resolved laser-induced plasma spectroscopy,” Appl. Spectrosc. 54, 1279-1285 (2000). [CrossRef]
  16. M. Z. Martin, M. D. Cheng, and R. C. Martin, “Aerosol measurement by laser-induced plasma technique: A review,” Aerosol Sci. Technol. 31, 409-421 (1999). [CrossRef]
  17. D. P. Malinowski, H. Zuo, D. P. Belesky, and G. A. Alloush, “Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. Endophytes,” Plant Soil 276, 1-12 (2005). [CrossRef]
  18. J. Kaiser, O. Samek, L. Reale, M. Liska, R. Malina, A. Ritucci, A. Poma, A. Tucci, F. Flora, A. Lai, L. Mancini, G. Tromba, F. Zanini, A. Faenov, T. Pikuz, and G. Cinque, “Monitoring of the heavy-metal hyperaccumulation in vegetal tissues by X-ray radiography and by femto-second laser induced breakdown spectroscopy,” Microsc. Res. Tech. 70, 147-153 (2007). [CrossRef]
  19. V. Juve, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, “Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 62, 1047-1053 (2008). [CrossRef]
  20. M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of LIBS spectra,” Spectrochim. Acta Part B 60, 1179-1185 (2005). [CrossRef]
  21. B. Krasnodebska-Ostrega, H. Emons, and J. Golimowski, “Selective leaching of elements associated with Mn-Fe oxides in forest soil, and comparisons of two sequential extraction methods,” Fresenius J. Anal. Chem. 371, 385-390 (2001). [CrossRef] [PubMed]
  22. N. G. Yoccoz, “Use, overuse, and misuse of significance testes in evolutionary biology and ecology,” Bull. Ecol. Soc. Am. 72, 106-111 (1991).
  23. D. H. Johnson, “The insignificance of statistical significance testing,” J. Wildlife Manage. 63, 763-772 (1999). [CrossRef]
  24. A. A. Elmi, C. P. West, R. T. Robbins, and T. L. Kirkpatrick, “Endophyte effects on reproduction of a root-knot nematode (Meloidogyne marylandi) and osmotic adjustment in tall fescue,” Grass Forage Sci. 55, 166-172 (2000). [CrossRef]
  25. S. S. Humphries, K. D. Gwinn, and A. J. Stewart, “Effects of endophyte status of tall fescue tissues on the earthworm (Eisenia fetida),” Environ. Toxicol. Chem. 20, 1346-1350(2001). [PubMed]
  26. D. P. Malinowski and D. P. Belesky, “Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance,” Crop Sci. 40, 923-940 (2000). [CrossRef]
  27. W.-B. Lee, J. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material applications,” Appl. Spectrosc. Rev. 39, 27-97 (2004). [CrossRef]
  28. C. Lopez-Moreno, S. Palanco, and J. J. Laserna, “Remote laser-induced plasma spectrometry for elemental analysis of samples of environmental interest,” J. Anal. At. Spectrom. 19, 1479-1484 (2004). [CrossRef]
  29. J. Kaiser, M. Galiova, K. Novotny, R. Cervenka, L. Reale, J. Novotny, M. Liska, O. Samek, V. Kanicky, A. Hrdlicka, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta Part B 64, 67-73 (2009). [CrossRef]
  30. L. C. Trevizan, D. Santos, Jr., R. E. Samad, N. D. Vieira, Jr., L. C. Nunes, I. A. Rufini, and F. J. Krug, “Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials,” Spectrochim. Acta Part B 64, 369-377 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited