OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

Michaela Galiová, Jozef Kaiser, Francisco J. Fortes, Karel Novotný, Radomír Malina, Lubomír Prokeš, Aleš Hrdlička, Tomáš Vaculovič, Miriam Nývltová Fišáková, Jiří Svoboda, Viktor Kanický, and Javier J. Laserna  »View Author Affiliations


Applied Optics, Vol. 49, Issue 13, pp. C191-C199 (2010)
http://dx.doi.org/10.1364/AO.49.00C191


View Full Text Article

Enhanced HTML    Acrobat PDF (1106 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mm × 15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for the fast, spatially resolved analysis of prehistoric teeth samples. In addition to micro chemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.

© 2010 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(330.6100) Vision, color, and visual optics : Spatial discrimination
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

History
Original Manuscript: September 18, 2009
Revised Manuscript: January 31, 2010
Manuscript Accepted: February 1, 2010
Published: March 26, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Michaela Galiová, Jozef Kaiser, Francisco J. Fortes, Karel Novotný, Radomír Malina, Lubomír Prokeš, Aleš Hrdlička, Tomáš Vaculovič, Miriam Nývltová Fišáková, Jiří Svoboda, Viktor Kanický, and Javier J. Laserna, "Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry," Appl. Opt. 49, C191-C199 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-49-13-C191


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. L. Boskey, “Mineraization of bones and teeth,” Elements 3, 385-391 (2007). [CrossRef]
  2. M. H. Ross, G. I. Kaye, and W. Pawlina, Histology: a Text and Atlas (Lippincott Williams & Wilkins, 2002).
  3. L. T. Runia, “Gebruik van strontium, andere sporenelementen en stabile isotopen als voedingsindicatoren in de archeologie,” Voeding 46, 368-375 (1985).
  4. L. T. Humphrey, T. E. Jeffries, and M. Ch. Dean, “Micro spatial distributions of lead and zinc in human deciduous tooth enamel,” in Technique and Application in Dental Anthropology, J.D.Irish and G.C.Nelson, eds. (Cambridge U. Press, 2008), 87-110. [CrossRef]
  5. F. Lochner, J. Appleton, F. Keenan, and M. Cooke, “Multi-element profiling of human deciduous teeth by laser ablation-inductively coupled plasma-mass spectrometry,” Anal. Chim. Acta 401, 299-306 (1999). [CrossRef]
  6. M. A. Bush, R. G. Miller, A. L. Norrlander, and P. J. Bush, “Analytical survey of restorative resins by SEM/EDS and XRF: databases for forensic purposes,” J. Forensic Sci. 53, 419-425 (2008). [CrossRef] [PubMed]
  7. A. E. Dolphin, A. H. Goodman and D. D. Amarasiriwardena, “Variation in elemental intensities among teeth and between pre- and postnatal regions of enamel,” Am. J. Phys. Anthropol. 128, 878-888 (2005). [CrossRef] [PubMed]
  8. L. T. Humphrey, W. Dirks, M. Ch. Dean, and T. E. Jeffries, “Tracking dietary transitions in weanling baboons (Papio hamadryas anubis) using strontium/calcium ratios in enamel,” Folia Primatol. 79, 197-212 (2008). [CrossRef] [PubMed]
  9. A. Cucina, J. Dudgeon, and H. Neff, “Methodological strategy for the analysis of human dental enamel by LA-ICP-MS,” J. Archaeol. Sci. 34, 1884-1888 (2007). [CrossRef]
  10. S. R. Copeland, M. Sponheimer, P. J. le Roux, V. Grimes, J. A. Lee-Thorp, D. J. de Ruiter, and M. P. Richards, “Strontium isotope ratios (87Sr/86Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods,” Rapid Commun. Mass Spectrom. 22, 3187-3194 (2008). [CrossRef] [PubMed]
  11. C. A. Perez, H. J. Sanchez, R. A. Barrea, M. Grenon, and J. Abraham, “Microscopic x-ray fluorescence analysis of human dental calculus using synchrotron radiation,” J. Anal. At. Spectrom. 19, 392-397 (2004). [CrossRef]
  12. J. E. Fergusson and N. G. Purchase, “The analysis and levels of lead in human teeth: a review,” Environ. Pollut. 46, 11-44(1987). [CrossRef] [PubMed]
  13. J. D. Adachi, D. Arlen, C. E. Webber, D. R. Chettle, L. F. Beaumont, and C. L. Gordon, “Is there any association between the presence of bone disease and cumulative exposure to lead?,” Calcif. Tissue Int. 63, 429-432 (1998). [CrossRef] [PubMed]
  14. M. L. Carvalho, C. Casaca, T. Pinheiro, J. P. Marques, P. Chevallier, and A. S. Cunha, “Analysis of human teeth and bones from the chalcolithic period by x-ray spectrometry,” Nucl. Instrum. Methods Phys. Res. B 168, 559-565 (2000). [CrossRef]
  15. R. R. Martin, S. J. Naftel, A. J. Nelson, A. B. Feilen, and A. Narvaez, “Metal distributions in the cementum rings of human teeth: possible depositional chronologies and diagenesis,” J. Archaeol. Sci. 34, 936-945 (2007). [CrossRef]
  16. D. Grman and P. Andrik, “Local analysis of hard tooth tissues with electron microprobe,” Czech. Stomatol. 78, 63-68 (1978).
  17. A. R. Johnson, “Strontium, calcium, magnesium, and phosphorus content of rat incisors as determined by electron microprobe analysis,” J. Dent. Res. 51, 115-121 (1972). [CrossRef] [PubMed]
  18. R. Brenn, Ch. Haug, U. Klar, S. Zander, K. W. Alt, D. N. Jamieson, K. K. Lee, and H. Schutkowski, “Post-mortem intake of lead in 11th century human bones and teeth studied by milli- and microbeam PIXE and RBS,” Nucl. Instrum. Methods Phys. Res. B 158, 270-274 (1999). [CrossRef]
  19. E. M. Stermer, S. Risnes, and P. M. Fischer, “Trace element analysis of blackish staining on the crowns of human archaeological teeth,” Eur. J. Oral Sci. 104, 253-261 (1996). [CrossRef] [PubMed]
  20. B. Jälevik, H. Odelius, W. Dietz, and J. G. Norén, “Secondary ion mass spectrometry and x-ray microanalysis of hypomineralized enamel in human permanent first molars,” Arch. Oral Biol. 46, 239-247 (2001). [CrossRef] [PubMed]
  21. O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liška, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).
  22. T. Prohaska, Ch. Latkoczy, G. Schultheis, M. Teshler-Nicola, and G. Stingeder, “Investigation of Sr isotope ratios in prehistoric human bones and teeth using laser ablation ICP-MS and ICP-MS after Rb/Sr separation,” J. Anal. At. Spectrom. 17, 887-891 (2002). [CrossRef]
  23. M. V. ZoriyMV D. Mayer, and J. S. Becker, “Metal imaging on surface of micro- and nanoelectronic devices by laser ablation inductively coupled plasma mass spectrometry and possibility to measure at nanometer range,” J. Am. Soc. Mass Spectrom. 20, 883-890 (2009). [CrossRef] [PubMed]
  24. K. Novotný, J. Kaiser, M. Galiová, V. Konečná, J. Novotný, R. Malina, M. Liška, V. Kanický, and V. Otruba, “Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta B 63, 1139-1144 (2008). [CrossRef]
  25. J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, and R. Kizek, “Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta B 64, 67-73(2009). [CrossRef]
  26. K. M. Lee, J. Appleton, M. Cooke, F. Keenam, and K. Sawicka-Kapusta, “Use of laser ablation inductively coupled plasma mass spectrometry to provide element versus time profiles in teeth,” Anal. Chim. Acta 395, 179-185 (1999). [CrossRef]
  27. F. Lochner, J. Appleton, F. Keenan, and M. Cooke, “Multi-element profiling of human deciduous teeth by laser ablation-inductively coupled plasma-mass spectrometry,” Anal. Chim. Acta 401, 299-306 (1999). [CrossRef]
  28. D. Kang, D. Aamarasiriwardena, and A. H. Goodman, “Application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layers and pulp,” Anal. Bioanal. Chem. 378, 1608-1615 (2004). [CrossRef] [PubMed]
  29. R. M. Frank, M. L. Sargentini-Maier, J. C. Turlot, and M. J. F. Leroy, “Zinc and strontium analyses by energy dispersive x-ray fluorescence in human permanent teeth,” Arch. Oral Biol. 34, 593-597 (1989). [CrossRef] [PubMed]
  30. T. Molleson, “Trace elements in human teeth,” in Trace Elements in Environmental History, G.Grupe and B.Herrmann, eds. (Springer, 1988), 67-82. [CrossRef]
  31. E. Reitznerová, D. Aamarasiriwardena, M. Kopčáková, and R. M. Barnes “Determination of some trace elements in human teeth,” Fresen. J. Anal. Chem. 367, 748-754 (2000). [CrossRef]
  32. J. H. Burton, T. D. Price, L. Cahue, and L. E. Wrighl, “The use of barium and strontium abundances in human skeletal tissues to determine their geographic origins,” Int. J. Osteoarchaeol. 13, 88-95 (2003). [CrossRef]
  33. G. Grupe, Dental Anthropology. Fundamentals, Limits and Prospects (Springer, 1998).
  34. J. H. Burton and T. D. Price, “The ratio of barium to strontium as a paleodietary indicator of consumption of marine resources,” J. Archaeol. Sci. 17, 547-557 (1990). [CrossRef]
  35. M. Sponheimer, D. de Ruiter, J. Lee-Thorp, and A. Späth, “Sr/Ca and early hominin diets revisited: new data from modern and fossil tooth enamel,” J. Hum. Evol. 48, 147-156 (2005). [CrossRef] [PubMed]
  36. J. H. Burton, “Trace elements in bone as paleodietary indicators,” in Archaeological Chemistry. Organic, Inorganic and Biochemical Analysis, V.M.Orna, ed. (American Chemical Society, 1996), pp. 327-332. [CrossRef]
  37. J. A. Ezzo, “Putting the “chemistry” back into archaeological bone chemistry analysis: modelling potential palaeodietary indicators,” J. Anthropol. Archaeol. 13, 1-34 (1994). [CrossRef]
  38. M. J. Kohn, M. J. Schoeninger, and W. W. Barker, “Altered states: effects of diagenesis on fossil tooth chemismy,” Geochim. Cosmochim. Acta 63, 2737-2747 (1999). [CrossRef]
  39. L. Rodríguez-Fernández, J. L. Ruvalcaba-Sil, M. A. Ontalba-Salamanca, J. A. Román-Berrelleza, M. L. Gallardo, D. M. Grimaldi, O. G. de Lucio, and J. Miranda, “Ion beam analysis of ancient Mexican colored teeth from archaeological sites in Mexico City,” Nucl. Instrum. Methods Phys. Res. B 150, 663-666 (1999). [CrossRef]
  40. J. Tauferová, “Can be the content of metal elemets in fossil bones as indicator of the environment quality in the past?,” Czech. Hyg. 36, 163-170 (1991).
  41. T. A. Elliott and G. W. Grime, “Examining the diagenetic alteration of human bone material from a range of archaeological burial sites using nuclear microscopy,” Nucl. Instrum. Methods Phys. Res. B 77, 537-547 (1993). [CrossRef]
  42. R. B. Parker and H. Toots, “Minor elements in fossil bone,” Geol. Soc. Am. Bull. 81, 925-932 (1970). [CrossRef]
  43. F. C. Besic, C. R. Knowles, M. R. Wiemann, Jr, and O. Keller, “Electron probe microanalysis of noncarious enamel and dentin and calcified tissues in mottled teeth,” J. Dent. Res. 48, 131-139 (1969). [CrossRef] [PubMed]
  44. J. H. Shaw, and P. K.-J. Yen, “Sodium, potassium, and magnesium concentrations in the enamel and dentin of human and Rhesus monkey teeth,” J. Dent. Res. 51, 95-101 (1972). [CrossRef] [PubMed]
  45. J. Steinfort, F. C. M. Driessens, H. J. M. Heijligers and W. Beertsen, “The distribution of magnesium in developing rat incisor dentin,” J. Dent. Res. 70, 187-191 (1991). [CrossRef] [PubMed]
  46. Sz. Arany, N. Yoshioka, D. Ishiyama, and T. Mizuta, “Investigation of trace element distribution in permanent root dentine by laser ablation inductively coupled plasma mass spectrometry,” Akita J. Med. 31, 107-112 (2004).
  47. J. Svoboda, ed., “Dolni Věstonice II - western slope, ERAUL 54 (Université de Liege, 1991).
  48. B. Klima, “Dolni Věstonice; výzkum tábořiště lovců mamutů v letech 1947-1952” (Academia Prague, 1963), in Czech.
  49. M. Nývltová Fišáková, “Seasonality of Gravettian sites by study of teeth cementum microstructures of mammals,” in Přehledy výzkumů 48 (Research digests 48) (Academy of Sciences of the Czech Republic, 2007) (in Czech), pp. 13-23.
  50. Applied Photonics Limited, “Analytical capabilities of LIBS,” http://www.appliedphotonics.co.uk/Libs/capabilities_libs.htm
  51. I. Ohlídal, M. Ohlídal, D. Franta, V. Čudek, V. Bursiková, P. Klapetek, and K. Páleníková, “Influence of technological conditions on mechanical stresses inside diamond-like carbon films,” Diamond Relat. Mater. 14, 1835-1838 (2005). [CrossRef]
  52. Z. A. Abdel-Salam, A. H. Galmed, E. Tognoni, and M. A. Harith, “Estimation of calcified tissues hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra,” Spectrochim. Acta B 62, 1343-1347(2007). [CrossRef]
  53. A. Zazzo, Ch. L. Ecuyer, S. M. F. Sheppard, P. Grandjean, and A. Mariotti, “Diagenesis and the reconstruction of paleoenvironments: a method to restore original δO18 values of carbonate and phosphate from fossil tooth enamel,” Geochim. Cosmochim. Acta 68, 2254-2258 (2004).
  54. M. Nývltová Fišáková, “Seasonality, palaeoecology and migration of fauna from the Gravettian sites,” Abstract Books 9th Paleontological Conference (Polish Academy of Sciences Institute of Paleobiology, 2008), 63-64.
  55. M. Nývltová Fišáková, M. Galiová, J. Kaiser, F. J. Fortes, K. Novotný, R. Malina, L. Prokeš, A. Hrdlička, T. Vaculovič, and J. J. Laserna, “Bear diet, seasonality and migration based on chemical multielemental teeth analysis,” in Přehled výzkumů 50 (Research Digests 50) (Academy of Sciences of the Czech Republic, 2009), pp. 27-34.
  56. M. Nývltová Fišáková, M. Galiová, J. Kaiser, F. J. Fortes, K. Novotný, R. Malina, T. Vaculovič, L. Prokeš, A. Hrdlička, J. Svoboda, J. J. Laserna, and M. Vláčiky, “Bear Diet, seasonality and migration based on chemical multielemental analysis,” Abstrakt Book, 15th Cave Bear Symposium (Faculty of Natural Sciences, Comenius University in Bratislava, Slovak Republic, 2009), pp. 42-43.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited