OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Direct-current-based image reconstruction versus direct-current included or excluded frequency-domain reconstruction in diffuse optical tomography

Guan Xu, Daqing Piao, Charles F. Bunting, and Hamid Dehghani  »View Author Affiliations


Applied Optics, Vol. 49, Issue 16, pp. 3059-3070 (2010)
http://dx.doi.org/10.1364/AO.49.003059


View Full Text Article

Enhanced HTML    Acrobat PDF (919 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the level of image artifacts in optical tomography associated with measurement uncertainty under three reconstruction configurations, namely, by using only direct-current (DC), DC-excluded frequency-domain, and DC-included frequency-domain data. Analytic and synthetic studies demonstrate that, at the same level of measurement uncertainty typical to optical tomography, the ratio of the standard deviation of μ a over μ a reconstructed by DC only is at least 1.4 times lower than that by frequency-domain methods. The ratio of standard deviations of D (or μ s ) over D (or μ s ) reconstructed by DC only are slightly lower than those by frequency-domain methods. Frequency-domain reconstruction including DC generally outperforms that excluding DC, but as the amount of measurements increases, the difference between the two diminishes. Under the condition of a priori structural information, the performances of three reconstruction configurations are seemingly equivalent.

© 2010 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5270) Medical optics and biotechnology : Photon density waves
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 25, 2009
Revised Manuscript: March 16, 2010
Manuscript Accepted: March 29, 2010
Published: May 25, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Guan Xu, Daqing Piao, Charles F. Bunting, and Hamid Dehghani, "Direct-current-based image reconstruction versus direct-current included or excluded frequency-domain reconstruction in diffuse optical tomography," Appl. Opt. 49, 3059-3070 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-49-16-3059


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  2. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation,” Phys. Med. Biol. 49, 1055–1078 (2004). [CrossRef] [PubMed]
  3. H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat. 4, 483–496 (2005). [PubMed]
  4. T. Tanifuji and M. Hijikata, “Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Trans. Med. Imaging 21, 181–184 (2002). [CrossRef] [PubMed]
  5. W. Mo and N. Chen, “Fast time-domain diffuse optical tomography using pseudorandom bit sequences,” Opt. Express 16, 13643–13650 (2008). [CrossRef] [PubMed]
  6. B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729(1995). [CrossRef] [PubMed]
  7. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999). [CrossRef]
  8. J. Wang, S. Jiang, K. D. Paulsen, and B. W. Pogue, “Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser,” Appl. Opt. 48, D198–D207(2009). [CrossRef] [PubMed]
  9. D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared hemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol. 46, 41–62 (2001). [CrossRef] [PubMed]
  10. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997). [CrossRef] [PubMed]
  11. N. G. Chen, M. Huang, H. Xia, D. Piao, E. Cronin, and Q. Zhu, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004). [CrossRef] [PubMed]
  12. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247(2000). [CrossRef] [PubMed]
  13. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008). [CrossRef] [PubMed]
  14. E. S. Papazoglou, M. S. Weingarten, L. Zubkov, L. Zhu, S. Tyagi, and K. Pourezaei, “Near infrared diffuse optical tomography: improving the quality of care in chronic wounds of patients with diabetes,” Biomed. Instrum. Technol. 41, 83–87 (2007). [CrossRef] [PubMed]
  15. G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5, 351–363 (2006). [PubMed]
  16. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003). [CrossRef] [PubMed]
  17. H. K. Kim, U. J. Netz, J. Beuthan, and A. H. Hielscher, “Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes,” Opt. Express 16, 18082–18101 (2008). [CrossRef] [PubMed]
  18. N. Iftimia and H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261 (2000). [CrossRef]
  19. A. M. Siegel, J. J. A. Marota, and D. A. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Opt. Express 4, 287–298 (1999). [CrossRef] [PubMed]
  20. Y. Xu, X. Gu, T. Khan, and H. Jiang, “Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data,” Appl. Opt. 41, 5427–5437 (2002). [CrossRef] [PubMed]
  21. Z. Yuan and H. Jiang, “Image reconstruction scheme that combines modified Newton method and efficient initial guess estimation for optical tomography of finger joints,” Appl. Opt. 46, 2757–2768 (2007). [CrossRef] [PubMed]
  22. H. Jiang, K. D. Paulsen, U. L. Osterbergy, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998). [CrossRef] [PubMed]
  23. Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001). [CrossRef] [PubMed]
  24. Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate Part II: Experimental demonstration,” Opt. Express 16, 17505–17520 (2008). [CrossRef] [PubMed]
  25. A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “ Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004). [CrossRef] [PubMed]
  26. K. K. Wang and T. C. Zhu, “Reconstruction of in-vivo optical properties for human prostate using interstitial diffuse optical tomography,” Opt. Express 17, 11665–11672 (2009). [CrossRef] [PubMed]
  27. M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt. 46, 2743–2756 (2007). [CrossRef] [PubMed]
  28. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001). [CrossRef] [PubMed]
  29. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieriand, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213(1994). [CrossRef] [PubMed]
  30. D. Boas, T. Gaudette, and S. R. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express 8, 263–270 (2001). [CrossRef] [PubMed]
  31. S. L. Jacques, “Reflectance spectroscopy with optical fiber devices and transcutaneous bilirubinometers,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A.M.Verga Scheggi, S.Martellucci, A.N.Chester, and R.Pratesi, eds. (Kluwer Academic, 1996), pp. 83–94.
  32. F. Fabbri, M. A. Franceschini, and S. Fantini, “Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging,” Appl. Opt. 42, 3063–3072 (2003). [CrossRef] [PubMed]
  33. The original derivation in for σμs′/μs′ has ρ in the equation, which is inconsistent with that obtained for σμa/μa. Equation corrected this inconsistency.
  34. B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001). [CrossRef]
  35. G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part I: simulation,” Opt. Express 16, 17484–17504 (2008). [CrossRef] [PubMed]
  36. H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128(2003). [CrossRef] [PubMed]
  37. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Meth. Eng. 25, 711–732 (2009). [CrossRef]
  38. P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006). [CrossRef] [PubMed]
  39. M. Huang and Q. Zhu, “A dual-mesh optical tomography reconstruction method with depth correction using a prioriultrasound information,” Appl. Opt. 43, 1654–1662 (2004). [CrossRef] [PubMed]
  40. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884(1998). [CrossRef]
  41. B. Harrach, “On uniqueness in diffuse optical tomography,” Inverse Probl. 25, 055010 (2009). [CrossRef]
  42. Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound coupled near-infrared optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14, 030506 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited