OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

High-velocity-flow imaging with real-time Doppler optical coherence tomography

Richard Villey, Lionel Carrion, Dominic Morneau, Caroline Boudoux, and Roman Maciejko  »View Author Affiliations

Applied Optics, Vol. 49, Issue 16, pp. 3140-3149 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1653 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a real-time time-domain Doppler optical coherence tomography (OCT) system based on the zero-crossing method for velocity measurements of fluid flows with attainable velocities up to 10 m / s . In the current implementation, one-dimensional and two-dimensional velocity profiles of fluid flows ranging from 1 cm / s to more than 3 m / s were obtained for both laminar and turbulent flows. The line rate was approximately 500 Hz , and the images were treated in real time. This approach has the advantage of providing reliable velocity maps free from phase aliasing or other artifacts common to several OCT systems. The system is particularly well suited for investigating complex velocity profiles, especially in the presence of steep velocity gradients.

© 2010 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 25, 2010
Manuscript Accepted: April 30, 2010
Published: May 31, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Richard Villey, Lionel Carrion, Dominic Morneau, Caroline Boudoux, and Roman Maciejko, "High-velocity-flow imaging with real-time Doppler optical coherence tomography," Appl. Opt. 49, 3140-3149 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999). [CrossRef]
  3. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995). [CrossRef] [PubMed]
  4. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997). [CrossRef] [PubMed]
  5. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997). [CrossRef] [PubMed]
  6. Z. Xu, L. Carrion, and R. Maciejko, “An assessment of the Wigner distribution method in Doppler OCT,” Opt. Express 15, 14738–14749 (2007). [CrossRef] [PubMed]
  7. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997). [CrossRef]
  8. A. L. Oldenburg, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner,” Appl. Opt. 42, 4606–4611 (2003). [CrossRef] [PubMed]
  9. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29, 171–173 (2004). [CrossRef] [PubMed]
  10. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25, 1448–1450(2000). [CrossRef]
  11. V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002). [CrossRef]
  12. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995). [CrossRef]
  13. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997). [CrossRef] [PubMed]
  14. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006). [CrossRef] [PubMed]
  15. J. F. De Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003). [CrossRef] [PubMed]
  16. J. K. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13, 5234–5239 (2005). [CrossRef] [PubMed]
  17. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11, 794–809 (2003). [CrossRef] [PubMed]
  18. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nature Medicine 15, 1219–1223 (2009). [CrossRef] [PubMed]
  19. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32, 506–508 (2007). [CrossRef] [PubMed]
  20. Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett. 32, 1587–1589(2007). [CrossRef] [PubMed]
  21. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15, 408–422(2007). [CrossRef] [PubMed]
  22. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase-Unwrapping: Theory, Algorithm, and Software (Wiley-Interscience, 1998).
  23. D. Morofke, M. C. Kolios, I. A. Vitkin, and V. X. D. Yang, “Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator,” Opt. Lett. 32, 253–255 (2007). [CrossRef] [PubMed]
  24. B. J. Vakoc, S. H. Yun, J. F. De Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005). [CrossRef] [PubMed]
  25. D. N. Ku, “Blood flow in arteries,” Annu. Rev. Fluid Mech. 29, 399–434(1997).
  26. M. Bonesi, D. Churmakov, and I. Meglinski, “Study of flow dynamics in complex vessels using Doppler optical coherence tomography,” Meas. Sci. Technol. 18, 3279–3286 (2007). [CrossRef]
  27. S. J. Lee, “Optical methods in flow measurement,” in Handbook of Optical Metrology: Principles and Applications, T.Yoshizawa, ed. (CRC Press, 2008).
  28. G. E. Nilsson, E. G. Salerud, N. O. T. Strömberg, and K. Wårdell, “Laser Doppler perfusion monitoring and imaging,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003). [CrossRef]
  29. D. A. Zimnyakov and V. V. Tuchin, “Speckle correlometry,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003). [CrossRef]
  30. Z. Luo, Z. Yuan, M. Tully, Y. Pan, and C. Du, “Quantification of cocaine-induced cortical blood flow changes using laser speckle contrast imaging and Doppler optical coherence tomography,” Appl. Opt. 48, D247–D255 (2009). [CrossRef] [PubMed]
  31. R. W. A. Scarr, “Zero crossings as a means of obtaining spectral information in speech analysis,” IEEE Trans. Audio Electroacoust. 16, 247–255 (1968). [CrossRef]
  32. D. L. Franklin, W. Schlegel, and R. F. Rushmer, “Blood flow measured by Doppler frequency shift of back-scattered ultrasound,” Science 134, 564–565 (1961). [CrossRef] [PubMed]
  33. Z. Xu, L. Carrion, and R. Maciejko, “A zero-crossing detection method applied to Doppler OCT,” Opt. Express 16, 4394–4412 (2008). [CrossRef] [PubMed]
  34. G. Lamouche, C.-E. Bisaillon, M. Dufour, B. Gauthier, R. Maciejko, and J.-P. Monchalin, “Optical coherence tomography for industrial and biomedical applications,” Proc. SPIE 6341, 63410T (2006). [CrossRef]
  35. L. Carrion, E. Hamel, A. Leblanc-Hotte, C. Boudoux, O. Guenat, and R. Maciejko, “Characterization of microfluidic systems with Doppler optical coherence tomography,” Proc. SPIE 7386, 73860B (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited