OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom

Feng Gao, Jiao Li, Limin Zhang, Patrick Poulet, Huijuan Zhao, and Yukio Yamada  »View Author Affiliations


Applied Optics, Vol. 49, Issue 16, pp. 3163-3172 (2010)
http://dx.doi.org/10.1364/AO.49.003163


View Full Text Article

Enhanced HTML    Acrobat PDF (999 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There has been recently a considerable interest in simultaneously reconstructing yield and lifetime distributions of fluorescent imaging agents inside a bulky tissue, since combined monitoring of these two parameters provides a potential means of in vivo interrogating quantitative and environmental information of specific molecules, as well as accessing interactions among them. It is widely accepted that an advantageous way of accomplishing the task in the context of small-animal imaging is to use a time-domain (TD) modality. In this paper, we present a full three-dimensional, featured-data algorithm for TD diffuse fluorescence tomography, which inverts the Laplace-transformed TD coupled photon diffusion equations and employs a pair of real-domain transform-factors to effectively separate the fluorescent yield and lifetime parameters. By use of a specifically designed 16 × 16 channel time-correlated single photon counting system and a normalized Born formulation for the inversion, the proposed scheme in a transmission mode is experimentally validated to achieve simultaneous reconstruction of the fluorescent yield and lifetime distributions with reasonable accuracy.

© 2010 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 22, 2009
Revised Manuscript: March 15, 2010
Manuscript Accepted: April 30, 2010
Published: May 31, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Feng Gao, Jiao Li, Limin Zhang, Patrick Poulet, Huijuan Zhao, and Yukio Yamada, "Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom," Appl. Opt. 49, 3163-3172 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-49-16-3163


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Med. 8, 757–760 (2002). [CrossRef] [PubMed]
  2. X. L. Song, D. F. Wang, N. G. Chen, J. Bai, and H. K. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007). [CrossRef] [PubMed]
  3. V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A 26, 1805 (2009). [CrossRef]
  4. J. McGinty, V. Y. Soloviev, K. B. Tahir, R. Laine, D. W. Stuckey, J. V. Hajnal, A. Sardini, P. M. W. French, and S. R. Arridge, “Three-dimensional imaging of Forster resonance energy transfer in heterogeneous turbid media by tomographic fluorescent lifetime imaging,” Opt. Lett. 34, 2772–2774 (2009). [CrossRef] [PubMed]
  5. H.-B. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998). [CrossRef]
  6. A. B. Thompson, D. J. Hawrysz, and E. M. Sevick-Muraca, “Near-infrared fluorescence contrast-enhanced imaging with area illumination and area detection: the forward imaging problem,” Appl. Opt. 42, 4125–4136 (2003). [CrossRef] [PubMed]
  7. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003). [CrossRef] [PubMed]
  8. S. Lam, F. Lesage, and X. Intes, “Time domain fluorescent diffuse optical tomography: analytical expressions,” Opt. Express 13, 2263–2275 (2005). [CrossRef] [PubMed]
  9. F. Gao, H.-J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006). [CrossRef] [PubMed]
  10. L.-M. Zhang, F. Gao, H.-Y. He, and H.-J. Zhao, “Three-dimensional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors,” Opt. Express 16, 7214–7223 (2008). [CrossRef] [PubMed]
  11. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255–12270 (2006). [CrossRef] [PubMed]
  12. V. Y. Soloviev, J. McGinty, K. B. Tahir, M. A. Neil, A. Sardini, J. V. Hajnal, S. R. Arridge, and P. M. French, “Fluorescence lifetime tomography of live cells expressing enhanced green fluorescent protein embedded in a scattering medium exhibiting background autofluorescence,” Opt. Lett. 32, 2034–2036(2007). [CrossRef] [PubMed]
  13. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data acquisition,” Appl. Opt. 46, 7384–7391 (2007). [CrossRef] [PubMed]
  14. V. Y. Soloviev, C. D’Andrea, G. Valentini, R. Cubeddu, and S. R. Arridge, “Combined reconstruction of fluorescent and optical parameters using time-resolved data,” Appl. Opt. 48, 28–36 (2009). [CrossRef]
  15. F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B: Biol. 98, 77–94 (2010). [CrossRef]
  16. S.-H. Han and D. J. Hall, “Estimating the depth and lifetime of a fluorescent inclusion in a turbid medium using a simple time-domain optical method,” Opt. Lett. 33, 1035–1037 (2008). [CrossRef] [PubMed]
  17. F. Gao, H.-J. Zhao, L.-M. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express 16, 13104–13121 (2008). [CrossRef] [PubMed]
  18. R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009). [CrossRef] [PubMed]
  19. H.-J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, 062107(2007). [CrossRef]
  20. M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008). [CrossRef] [PubMed]
  21. D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomupter tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80043701 (2009). [CrossRef] [PubMed]
  22. F. Leblond, D. Kepshire, J. A. Ohara, H. Dehghani, S. Srinivasan, N. Mincu, M. Hutchins, M. Khayat, and B. W. Pogue, “Imaging protoporphyrin IX fluorescence with a time-domain FMT/microCT system,” Proc. SPIE 7171, 717106 (2009). [CrossRef]
  23. E. E. Graves, J. Rapoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911(2003). [CrossRef] [PubMed]
  24. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005). [CrossRef]
  25. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  26. F. Gao, H.-J Zhao, L.-M. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express 16, 13104–13121 (2008). [CrossRef] [PubMed]
  27. A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imag. 27, 1152–1163 (2008). [CrossRef]
  28. J. Wu, “Convolution picture of the boundary conditions in photon migration and implications in time-resolved optical imaging of biological tissues,” J. Opt. Soc. Am. A 14, 280–287 (1997). [CrossRef]
  29. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005). [CrossRef] [PubMed]
  30. X. Intes, V. Ntziachristos, J. P., A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10(2002). [CrossRef] [PubMed]
  31. E. M. C. Hillman, J. C. C, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatyoe extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000). [CrossRef]
  32. F. Gao, H.-J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography—a comparison between featured-data and full time-resolved schemes,” Opt. Quant. Elect. 37, 1287–1304 (2005). [CrossRef]
  33. J. Riley, M. Hessen, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys. 34, 4890–4900 (2007). [CrossRef]
  34. N. Ducros, L. Hervé, A. Da Silva, J. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I. theoretical material,” Phys. Med. Biol. 54, 7089–7105 (2009). [CrossRef] [PubMed]
  35. N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54, 7107–7119(2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited